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A fast multi-pole expansion applied to bending of plates 
integral equations 

 
by 

Mohamed Elsayed Mohamed ElsayedNassar 
 

An Abstract of 

A thesis submitted in partial fulfillment of the requirements for the degree of 

Master of Science in Engineering Mathematics 
 

Faculty of Engineering -Shobra 

Benha University 

This Thesis presents a new fast multi-pole boundary element formulation for the 

solution of Reissner’s plate bending problems. The solution of Reissner’s plate 

bending problems using the conventional direct boundary element method leads to a 

non-symmetric fully populated system of matrices. The complexity of the solution 

then becomes of the order O(N3) mathematical operations, where N is the total number 

of problem unknowns. Hence, the use of fast multi-pole technique becomes practically 

essential in case of solving large-scale problems by the direct boundary element 

method.  

The suggested formulation is based on representing the fundamental solutions as 

function of potentials. These potentials and their relevant fundamental solutions are 

expanded by means of Taylor series expansions. In the present formulation, equivalent 

collocations are based on the first shift expansion of kernels. This is achieved by 

representation of far field integrations by series expansions and carrying out 

summations of far clusters, whereas the near field integrations are kept to be computed 

directly.  

In the presented implementation, the fast multi-pole boundary element method is 

coupled with the iterative solver: Generalized Minimal Residual System (GMRES). 

The computational complexity is rapidly reduced to be O(N log N). Numerical 

examples are presented to demonstrate the efficiency, time saving, and accuracy of the 
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formulation against the conventional direct BEM. The accuracy of the results is traced 

by cutting Taylor series to few terms. It was proven via numerical examples that three 

terms are enough to produce sufficient accuracy with substantial reduction of solution 

time.   
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Chapter 1: Introduction and Background 

1.1 Introduction 

Many engineering problems can be expressed using partial differential 

equations (PDEs). In early stages, solutions for PDES could only be obtained using 

analytical solution. However, analytical solutions are only applicable in some simple 

cases. In cases of complicated problems, analytical methods become increasingly 

tedious or even impossible. After the invention of modern computers, researchers 

focused on applying numerical methods in solutions of PDES. Such methods 

transform PDEs to algebraic equations that computer codes can solve. Many famous 

numerical methods have been used, such as finite difference method (FDM), finite 

element method (FEM) and boundary element method (BEM). The boundary element 

method is one of the strongest numerical methods in this field, but its application is 

limited only for small scale problems with simple geometry. In case of large scale 

problems, the BEM needs large memory for storage of coefficients matrices and a 

fully populated coefficient matrix is required to be solved. In other words, BEM 

produces dense and non-symmetric matrices, require O(N2) operations for computing 

the coefficient and O(N3) operations for solving the system by using direct solvers N is 

the number of unknowns. This disadvantage is not found in the finite element method, 

so that FEM is widely used in programming. In order to enable BEM to lead against 

FEM, many researches focused their works to overcome the previously mentioned 

problem concerned large scale problems solutions. So that the fast multi-pole method 

(FMM) that originally invented to solve N-particle large scale problems was applied in 

the BEM different applications. With the help of the FMM, the BEM can now solve 

large scale problems that are beyond the reach of other methods because its capable of 

reduce the computer processing unit (CPU) elapsed time and accelerate conventional 

BEM calculations to O(N). However one of these applications, which is the solution 

of Ressiner’s plate bending problems was not carried out yet. In this thesis, a novel 

technique which uses the Fast Multi-pole Method in solving Ressiner’s plate bending 

problems is introduced. To justify the selection of BEM into this thesis work, a review 
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is introduced for different numerical methods and their advantages and disadvantages 

in next sections. 

1.2 Numerical methods 

In this section the numerical methods that were widely used are reviewed 

including their advantage and disadvantage. Later, a comparison is made to 

demonstrate why the BEM is selected in this thesis work. 

1.2.1 Finite difference method (FDM) 

The FDM is a method used in the solution of boundary value problems for 

PDES. The FDM is based on a mathematical discretization of the plate continuum. 

For this purpose, the plate is covered by a two-dimensional mesh; the partial 

derivatives in the governing plate equation are replaced by corresponding finite 

difference quotients at each mesh point. In this way, the differential equation 

governing the displacements is transformed into algebraic equations. 

Advantage of the FDM: 

a) Conceptual simplicity. 

b) Mathematical simplicity. 

c) Ease of programming. 

Disadvantage of the FDM: 

a) It requires more work to achieve problem modeling and simulation. 

b) The matrix of the approximating system of linear algebraic equations if 

asymmetric, causing some difficulties in numerical solution of this system. 

c) An application of the FDM to domains of complicated geometry may run into 

serious difficulties. 

d) Inaccuracies due to many assumptions and approximations. 

1.2.2 The finite element method (FEM) 

According to the FEM [1], the whole domain of the plate under consideration is 

discretized into small elements which are only connected at their corner nodes. The 

unknowns of the problem are the deflections and rotations in the directions of 

prescribed degrees of freedom (generalized displacements). The values of these 

unknown are obtained from the solution of equilibrium and compatibility equations 
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assembled from all elements. Due to the wide usage of the FEM, there are many 

established commercial programs that based on the method such as (SAP2000) [2] 

…etc.  

Advantage of the FEM: 

a) Ability of modeling different geometries and nonlinear materials. 

b) Obtained system matrices are positive definite, banded, and sparse. 

c) Widely tested approach. 

d) Commercial availability. 

e) Flexibility. 

Disadvantage of the FEM: 

a) The FEM requires the use of powerful computers of considerable speed and 

storage capacity due to domain discretization in large scale problems. 

b) It is difficult to ascertain the accuracy of numerical results when large 

structural systems are analyzed. 

c) The method is poorly adapted to a solution of the so-called singular problems 

(e.g., plates and shells with cracks, corner points, discontinuity internal actions, 

etc.), and of problems for unbounded domains. 

d) The method presents many difficulties associated with problems of 

C1continuity and nonconforming elements in plate (and shell) bending analysis. 

e) Large effort and time consume in discretization of the domain and no flexibility 

in modification. 

f) Stress concentration. 

g) Element values average at vertex. 

1.2.3 The boundary element method (BEM) 

The boundary element method is a numerical computational method for solving 

linear partial differential equations which have been formulated as boundary integral 

equations. It can be applied in many areas of engineering and science including solid 

mechanics [3, 4], fluid mechanics [5, 6], acoustics [7, 8], fracture mechanics [9], and 

plasticity [10]. 

In recent years, the BEM has emerged as a powerful alternative to the FDM and FEM. 

While these numerical solution techniques require the discretization of the entire plate 
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domain, the BEM applies discretization only at the boundary of the continuum. 

Boundary element methods are usually divided into two categories: direct and indirect 

BEMs. The direct BEM formulates the problem in terms of variables that have 

definite physical meanings, such as displacements of the boundary nodes of the plate. 

In contrast, the indirect BEM uses variables whose physical meanings cannot always 

be clearly specified. The BEM’s history can be traced back to 1963 when Jaswon and 

Symm [11] proposed an integral method, in which; numerical solutions of 2-D 

potential problems were attempted by exploiting Green’s third identity. Their attempt 

of using Green’s third identity inspired Rizzo [3] in his research on elasticity, in which 

the Somigliana identity received special attention. Rizzo’s first paper [4] on solving 

elastostatic problem using integral equation approach has much stimulated the modern 

day development of the boundary element method. Later on, the boundary integral 

equation method has been explored and extended to many other research areas. The 

term “boundary element method” was first appeared in [12] in 1977 after the first 

paper by Lachat who incorporated shape functions, Gauss quadrature techniques 

borrowed from the FEM into boundary integral equation method. For the acoustic 

problem governed by Helmholtz equation, the first effort of using integral equation 

appeared in the same year that Jaswon and Symm published their first paper [11] of 

integral equation for potential problems. Chen and Schweikert [7] solved 3-D sound 

radiation problems using Fredholm integral equation of the second kind. Early works 

on boundary integral equation method for acoustic problems also include Chertock’s 

research [13], in which he predicted sound radiation from vibrating surfaces using 

integral equation, and Copley’s papers [14, 15], in which the non-uniqueness 

difficulties of the exterior boundary integral equation (BIE) at eigen frequencies 

associated with corresponding interior problems was first reported. A similar integral-

equation-based method, T-Matrix method, was developed by Waterman [8] in 1965 

for solving electromagnetic problems. To tackle the fictitious eigen frequency 

difficulties reported in Ref. [14], Schenck [16] in 1968 came up with an idea of adding 

some additional Helmholtz integral relations in the interior domain. Burton and Miller 

[17] in 1971 proposed another technique to overcome the fictitious frequency 

difficulties by linearly combining the conventional boundary integral equation (CBIE) 
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and the normal derivative of the BIE (HBIE) to circumvent this problem. Subsequent 

researches on the BEM include, but not limited to: 

1) Improving efficiency, including parallel computation [18], iterative solver [19, 

20], fast multi-pole method as will be detailed later [21, 22, 37], and many 

others. With the intensive research, the BEM continues to be a viable numerical 

simulation tool for many problems. 

2) New technologies and formulations to extend the applicability of the BEM, for 

example: half-space problems [23], indirect BEM [24], Galerkin BEM [25], 

transient analysis [26], inverse BEM [27], Eigen frequency determination [28], 

FEM-BEM coupling [29], and hybrid BEM [30]. 

3)  Effective integral evaluations, especially for the hyper-singular integrals. 

Various methods have been proposed, for example, direct evaluation in 

Hadamard finite part sense [31], regularization with Taylor expansions [32, 33] 

or Fourier–Legendre series [34], transforming into integrals with kernel of 

tangential derivatives or double surface integrals [17], indirect evaluations [35], 

and singularity subtraction [36]. 

Advantage of the BEM: 

a) Reduces problem dimension. 

b) Less unnecessary information. 

c) Focus on the body boundary. 

d) Good for incompressible materials and unbounded domains. 

e) Easy to define and vary boundary elements. 

f) Accuracy. 

g) Good for stress concentrations. 

Disadvantage of the BEM: 

a) Unfamiliar mathematics. 

b) Not efficient for nonlinear problems. 

c) Fully populated matrices. 

d)  Matrix is not symmetric, so it is non-convenient for large scale problems. 
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1.2.4 A Comparison of the FE and BE methods 

In this section some major differences between the two methods are outlined. 

Depending on the application some of these differences can either be considered as 

advantageous or disadvantageous to a particular scheme. 

1) FEM: An entire domain mesh is required. 

           BEM: A mesh of the boundary only is required. 

 Comment: Because of the reduction in size of the mesh, one often hears of 

 people saying that the problem size has been reduced by one dimension. This is 

 one of the major pluses of the BEM - construction of meshes for complicated 

 objects, particularly in 3D, is a very time consuming exercise. 

2) FEM: Entire domain solution is calculated as part of the solution. 

BEM: Solution on the boundary is calculated first, and then the solution at                       

domain points (if required) are found as a separate step 

Comment: There are many problems where the details of interest occur on the 

 boundary, or are localized to a particular part of the domain, and hence an           

entire domain solution is not required. 

3) FEM: Reactions on the boundary typically less accurate than the dependent 

variables. 

 BEM: Both “u” and “q” of the same accuracy. 

4) FEM: Differential Equation is being approximated. 

 BEM: Only boundary conditions are being approximated. 

 Comment: The use of the Green-Gauss theorem and a fundamental solution in 

 the formulation means that the BEM involves no approximations of the 

 differential Equation in the domain - only in its approximations of the boundary 

 conditions. 

5) FEM: Sparse symmetric matrix generated. 

 BEM: Fully populated non symmetric matrices generated. 

Comment: The matrices are generally of different sizes due to the differences                

in size of the domain mesh compared to the surface mesh. There are problems 

where  either method can give rise to the smaller system and quickest solution - 
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it depends partly on the volume to surface ratio. For problems involving 

infinite or  semi-infinite domains, BEM is to be favored. 

6) FEM: Element integrals easy to evaluate. 

 BEM: Integrals are more difficult to evaluate, and some contain integrands that 

 become singular. 

Comment: BEM integrals are far harder to evaluate. Also the integrals that are 

the most difficult (those containing singular integrands) have a significant 

effect  on the accuracy of the solution, so these integrals need to be evaluated 

accurately. 

7) FEM: Widely applicable. Handles nonlinear problems well. 

 BEM: Cannot even handle all linear problems. 

Comment: A fundamental solution must be found (or at least an approximate 

one) before the BEM can be applied. There are many linear problems (e.g., 

virtually any non-homogeneous equation) for which fundamental solutions are 

not known. There are certain areas in which the BEM is clearly superior, but it 

can be rather  restrictive in its applicability. 

8) FEM: Relatively easy to implement. 

 BEM: Much more difficult to implement. 

Comment: The need to evaluate integrals involving singular integrands makes 

the BEM at least an order of magnitude more difficult to implement than a 

corresponding finite element procedure. 

1.2.5 The fast multi-pole method (FMM): 

The fast multi-pole is not a method to solve a certain problem, but it is a technique 

that applies in a certain method to improve its efficiency. In conventional BEM, since 

the formed equation matrix is found to be dense and nonsymmetrical, this 

characteristic limits the use of the conventional BEM to medium size problems and 

simple geometries. In other words, the complexity order of conventional BEM 

calculations is O(N3) numerical operations, where N is the number of unknowns. 

However, it was concluded that this order can be reduced to O(N log N) or O(N) with 

the help of what is named first shift or second shift of fast multi-pole method (FMM) 

respectively. Some O(N log N) and O(N) algorithms were first reported to solve 
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particle simulation problems in the 1980s. Barnes and Hut [38] used a tree data 

structure and the concept of multi-pole expansion to calculate the matrix-vector 

product without forming the matrix explicitly. Their tree-code algorithm reduces the 

calculation complexity from O(N3) to O(N log N). By introducing the concept of the 

second shift, Greengard and Rokhlin’s [39], the complexity was further reduced to 

O(N). The first FMM formulations [38, 39] for the solution of the particle simulation 

problem have influenced the BEM numerical solution of boundary value problems 

especially in potential theory [40]. 

This novel technique for the solution of the N particle simulation problems has 

immediate implications on the BEM numerical solution of boundary value problems 

in potential theory, as its discrete linear system is the product of pair-wise interactions 

between sources. By using the tree structure, we can rearrange the precondition fully 

populated matrix according to boundary representation by near field and far field 

elements. The kernel expansion and the grouping technique, facilitate to translate the 

fully populated matrix which obtained from conventional BEM to sparse matrix in 

FMM with band width depend on the number of levels in the tree structure but this 

translation forced us to assume some unknowns and convert form direct solver to 

iterative solver. Recently, there has been an increasing interest in the analysis of the 

performance of iterative solutions of the equation sets arising from the BEM 

formulation  [41– 45].  

Algorithms that utilize FMM idea may be classified into two categories: spherical 

harmonic expansions and Taylor series expansions [46].  

Several O(N) algorithms for the direct BEM formulation of 3D elasticity problems 

based on spherical harmonic expansions are available in the literature. Among them, 

the works of Fu et al. [47] and Hayami and Sauter [48] are worth of special attention. 

Fu et al. decomposed the original 3D elasticity fundamental solution into five terms in 

such a way that each of them can be expanded in terms of spherical harmonic series 

with their corresponding duality principle. They tested the performance of the 

proposed algorithm by analyzing the problem of the elastic interaction of hundreds of 

solid spherical particles in which N = O (105): Hayami and Sauter [50] on the other 

hand, proposed an expansion of the fundamental solution in terms of the spherical 
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harmonic expansion of 1/R and the derivatives of R. Order O(N log N) algorithms in 

terms of the Taylor series expansion of the fundamental solution are also available in 

the literature for elasticity problems. Peirce and Napier [49] developed, using a Taylor 

series multi-pole expansion, an algorithm to solve a 2D problem of multiple cracks in 

an elastic media. 

 

It has been previously reported that multi-pole boundary element strategy based on 

Taylor expansions will result in computer codes which require O(N log N) operations 

for problems with N DOF. Popov and Power [51] presented a multi-pole BEM 

strategy developed for 3D elasticity problems which is also based on Taylor 

expansions but requires only O(N) operations. Popov and Power’s efficient algorithm 

results from the use of a clustering technique, first shift, in combination with an 

additional Taylor series expansion around the collocation points, second shift. The 

idea of the use of the second shift for a multi-pole scheme based on the Taylor series 

expansions was original proposed by Gomez and Power  [52] to solve a 2D viscous 

flow problem using an indirect BEM formulation. 

 

In conventional calculations of BEM, the matrices are fully populated and non-

symmetric. Therefore, the solution of the system when using direct solvers is 

expensive in computational costs. To overcome this drawback and to increase the 

efficiency of fast multi-pole solution, iterative solvers have to be adopted in the FMM 

formulation. Among these iterative techniques, Krylov subspace iterative methods are 

acknowledged as very effective iterative techniques for the linear systems arising from 

BEM formulation, especially, GMRES (generalized minimal residual system) [53, 

54]. The GMRES is an implicit iterative algorithm, and it can be applied to FMBEMs 

in conjunction with FMM. 

In this thesis, the application of FMM on the conventional BEM for plate bending 

problems is presented. In tracing the history of formulations based on conventional 

BEM for plate bending problems [55], it is recorded the work of Bezine [56] and Stern 

[57] for the thin plate theory and by Van der Weeen [58] for the thick plate theory. 

The plate theory according to Reissner [59] represents a general method for solving 
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both thin and thick plates. In this thesis, the formulation in [58] is considered as a base 

in applying FMM on the conventional BEM. 

1.3 Thesis objectives 

The objectives of this thesis are: 

1. To create the mathematics of the fast multi-pole formulation applied to 

direct boundary element method solution of shear-deformable plate bending 

problems. 

2. To produce sparse matrix instead of fully populated matrix developed in 

conventional boundary element coefficient matrix. 

3. To investigate and set the possible strategies for the implementation of the 

derived formulation into feasible algorithm. 

4. To implement the derived formulation in computer code and utilizing the 

iterative solver Generalized Minimal Residual System (GMRES). 

5. To test the proposed formulation by applying the developed code to 

problems and track the efficiency of the solution. 

1.4 Thesis organization 

This thesis consists of five chapters after this chapter. These chapters contain 

the followings: 

Chapter 2: The basic unit load and unit displacement (fundamental solutions) are 

reviewed. Basic fundamentals of the boundary element method (BEM) for analysis of 

thick plate are presented. The first principles of Reissner plate bending are reviewed 

including the definitions of stresses, strains, tractions, and boundary integral equation 

introduced 

Chapter 3: In this chapter the mathematical of fast multi-pole method are derived. 

Chapter 4: In this chapter, a developed computer code for Thick Plate Bending 

Problems for the suggested formulations is presented. 

Chapter 5: This chapter presents two examples including comparison between results 

of the fast multi-pole method for the thick plate theory and results of analytical 

solution. 
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Chapter 6: In this chapter a summary, conclusions and recommendations for future are 

given. 

1.5 Conclusions 

In this chapter, an introduction about history of plate theory development, the 

numerical methods used in the solution of partial differential equations (PDEs) were 

presented. The advantages and disadvantages for such a method were reviewed. Short 

notes about fast multi-pole method also were reviewed. Finally the structure of this 

thesis was presented. In the next chapter the relevant theoretical basis for conventional 

BEM of Reissner’s plate bending is reviewed. 
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Chapter 2: Boundary element method for Reissner’s plate 

2.1 Introduction 

In this chapter, the BEM application on Reissner’s plate bending problems is reviewed [62]. 

The conventional BEM formulation of Reissner’s plate bending theory is introduced. Then 

the fundamental solutions are derived based on their potential. Finally a conclusion is made 

and given. 

2.2 Conventional BEM for Reissner’s plate 

Consider an elastic plate of domain Ω and boundary Γ. The plate has a 

thickness h and is lying in the x1-x2 plane where x3=0 is located at the mid surface of 

the plate. The indicial notation is used in this thesis where the Greek indices vary from 

1 to 2 and the Roman indices vary from 1 to 3. According to Reissner’s plate bending 

theory [59], the differential equations that are governing the equilibrium can be 

written at any arbitrary point ,in absence of body forces, as follows [59]: 

0)ξ()ξ( 3  ααβ,β QM            

0)ξ(,3 Q           (2.1) 

where, M() and Q3()are the bending moments and shear forces stress resultants 

respectively. The stress-resultant generalized displacement relationships can be 

written at point as follows [59]: 
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



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



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
)ξ(
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2
)ξ()ξ(

2

1
)ξ( ,,, uuuDM     (2.2) 

 )ξ()ξ(
2

1
)ξ( ,3

2
3  


uuDQ 


        (2.3) 

where
)1(12 2

3




Eh
D  is the plate modulus of rigidity,  is the shear factor, E  and v are 

the Young’s modulus and Poisson’s ratio respectively, u() denotes the rotation in 

two directions x1, and x2, u3 denotes the deflection in x3 direction at point  (for the 

positive directions refer to Fig. (2.2)), and the symbol  denotes the identity matrix. 

Using Eqs. (2.2) and (2.3), Eq. (2.1) can be re-written in condensed form as follows: 
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Figure 2.1: The positive directions for the internal straining actions. 

 

 

Figure 2.2: Positive directions for the generalized displacement. 

 

0)ξ( jijuL           (2.4) 

where Lij is the differential operator that can be written as follows: 
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vvD

Lij    (2.5) 

in which 
)x(

)(
)(




x


 , and 2  is the two-dimensional Laplace operator.  

The direct boundary integral equation for Reissner’s plate can be written in the 

following form [58]: 



 

25 
 






)x()x(

)x( )x()xξ()x( )x()xξ()ξ(
2

1
dt,Udu,Tu jijjiji     (2.6) 

Where uj(x) and tj(x) denote the boundary generalized displacement and traction 

vectors respectively.  and x denote a source point and a field point located on the 

boundary respectively. Uij(,x) and Tij (,x) denote the two-point fundamental solution 

kernels [58]: 

      
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in which K0(R) and K1(R) are modified Bessel functions [61]. 
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 In order to solve the boundary integral equation, Eq. (2.6), the boundary is 

discretized (without losing the generality) into constant elements at which, the 

generalized displacements and/or the tractions are prescribed at some nodes.  The 

boundary unknowns are obtained by rewriting Eq. (2.6) at a number of collocation 

nodes equals to the number of unknowns. The solution of such equations will produce 

all boundary unknowns [58]. Hence, Eq. (2.6) can be rewritten as follows: 

  
  


N

j
jijj

N

j
jijji

jj

dUtdTuu
11

)x()xξ,()x()x()xξ,()x()ξ(
2

1
 (2.17)  

where N is the number of boundary elements. If Eq. (2.17) is applied to all boundary 

points (i=1 to N), the following system of equations is obtained: 
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N
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NNN
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i 1
1333

11
1333

1

][][ tGuH                                              (2.18)  

where {u} and {t} are the vectors of boundary generalized displacements and 

tractions, respectively, and [H] and [G] are the well-known boundary element 

influence matrices. Reordering Eq. (2.18) for separating boundary unknowns from 

boundary known values, the following system of equations will be formed as: 

    131333][   NNNN BxA                                                                                         (2.19) 

where the vector {x} represents all boundary unknowns; generalized displacements or 

tractions, and the vector {B}contains all remaining prescribed boundary conditions. 

By solving Eq.(2.19), all boundary unknowns are obtained. The matrix [A] in Eq.        

(2.19) is dense and nonsymmetrical, so that when it is solved by any direct solver such 

as Gauss elimination or LU decomposition, the solution requires O(N3) numerical 

operations. 

 

2.3. Fundamental solutions in terms of potentials 

The purpose of this section is to define the fundamental solutions Uij(,x) and 

Tij (,x) in terms of suitable potentials as pre request for the developed fast multi-pole 

expansion. Following Hörmander steps [60], the fundamental solution could be 

defined as follows: 

jiji ,,UL   )xξ()xξ(                 (2.20) 
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Where (, x) is the Paul Dirac delta distribution, and iL is given in Eq. (2.5). In order 

to solve Eq. (2.20), an operator decoupling scheme is carried out as follows. The co-

factor matrix of the original differential operator in Eq. (2.5) can be obtained as 

follows: 
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The corresponding determinant of the matrix operator in Eq. (2.21) can be obtained as 

follows: 

 2242
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vD
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A suitable potential (,x) has to be obtained first from the following differential 

equation:  

)xξ()xξ( det * ,,L i                 (2.23) 

i.e: 
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A possible solution of Eq. (2.24) yields the following potential: 
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whereK0(R) is the modified Bessel functions [61]. 

Define: 
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so its relevant derivatives can be obtained as follows: 
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Then, the final expression for Uij (,x) can be obtained as follows: 

)xξ()xξ( * ,L,U jiij                   (2.34) 

Considering Eq. (2.21), Eq.( 2.34) can be expanded to give: 
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Substituting from Eqs.( 2.27) to (2.32) into Eqs.( 2.35) to (2.37), the expressions for 

Uij(,x) can be obtained as follows: 
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Eqs. (2.38) to (2.40) represent the final expressions for the generalized displacements 

kernels Uij(,x) in terms of the scalar potential  and its relevant derivatives. 

Substitution of (,x) from Eq.(2.25) into Eqs.(2.38) to (2.40), the explicit form for 

the generalized displacement kernels are obtained as given in Eqs.(2.7) to (2.10). 
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The corresponding expressions for the generalized traction kernels Tij(,x)are 

also derived considering the stress-resultant generalized displacement relationships in 

Eqs. (2.2) and (2.3).Substituting from Eq.( 2.38) into Eq. (2.2) gives:  
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Hence the corresponding traction kernel can be obtained from: 
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where n(x) is the component of the outward normal at the field point (x). The 

following relevant derivatives can be obtained by considering Eq.( 2.38): 
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Substituting  Eqs.(2.43) and (2.44) into Eqs.( 2.41) and (2.42), gives: 
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Also, substituting Eq. (2.39) into Eq. (2.2) gives: 
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The corresponding traction kernel can be obtained from: 
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The following relevant derivatives can be obtained by considering Eq.(39): 
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and: 
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Substituting Eqs.(2.48) and (2.49) into Eqs.( 2.46) and (2.47), gives: 
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For the generalized shear traction kernels, on the other hand, substituting from 

Eqs.(2.38) and (2.39) into Eq. (2.3) gives:  
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The corresponding traction kernel can be obtained from: 
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Knowing that (recall Eq.( 2.39)): 
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And substituting Eqs.(2.38) and (2.48) into Eqs.( 2.51) and (2.52), gives: 

   3)4(222

3

2

3 )2()1()1(1)xξ( RvRvRvRvn
R

,T 


   

   )1(3)3( 3)4(22
,, vRvRvRvnRR           (2.54) 

Similar to Eq. (2.54), substituting from Eqs.(2.39) and (2.40) into Eq. (2.3) gives:  
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and the corresponding traction kernel is given by: 
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The following relevant derivatives can be obtained by considering Eq. (2.40): 
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And substituting Eqs.(2.39) and (2.57) into Eqs. (2.55) and (2.56), gives: 
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Expressions (2.45), (2.50), (2.54) and (2.58) represent the final expressions for the 

generalized traction kernels Tij(,x)  in terms of the scalar potential  and its relevant 

derivatives. Substitution of (,x) from Eq. (2.25) into  these equations, the explicit 

forms for traction expressions are obtained as given in Eqs.(2.11) to (2.14). 

2.4 Conclusions 

In this chapter the shear-deformable plate bending theory was reviewed. The direct boundary 

integral equations for the Reissner’s plate were discussed. Also, derivations of fundamental 

solution based on their potentials are made. In chapter 3 the fast multi-pole method for the 

Reissner’s plate will be discussed and demonstrate how this will technique overcome the 

disadvantage of conventional BEM. 
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Chapter 3: The Proposed Fast Multi-pole Method (FMM) 

3.1. Introduction 
This chapter introduces the proposed first shift fast multi-pole (FMM) application to the 

direct boundary element solution of shear-deformable plate bending. The basic idea of the 

FMM is presented in section 3.2. Then, section 3.3 explains the Taylor series expansions of 

fundamental solutions and its contributions to the presented FMM. In Sections 3.4 and 3.5, 

the first shift of FMM and the concept of moments are introduced. The expansion 

modifications corresponding to successive Taylor series application are illustrated in section 

3.6. Finally, section 3.7 presents the final form of the coefficient matrix after the application 

of FMM. 

 

3.2. The fast multi-pole idea 

In FMM technique, the boundary integration can be divided into two parts for each 

collocation (source) point: The near-field and the far-field. The near-field part 

represents the integration of the elements that are close to the collocation point, which 

is computed by the same manner as that of the conventional BEM. Whereas, the far-

field part provides the other remaining contribution to the overall value of integral that 

are corresponding to far boundary elements. This far-field contribution can be 

indirectly evaluated using equivalent summations via the FMM. It has to be noted that 

the far-field part represents the expensive part in conventional BEM calculations and 

it is also the part that spoils the sparsely of the influence matrices. Thus, the purpose 

of the FMM is to approximately and efficiently compute this expensive far-field part. 

Taylor series expansion is used here in to provide the ability to compute the far-field 

part as equivalent summations. Further details regarding FMM will be presented later 

in next sections. 

 

3.3. Taylor series expansions 

As can be seen from section 2.3, both generalized displacement and traction 

kernels can be represented as derivatives of the potential (,x). In order to obtain the 

required multi-pole expansions for those kernels at far field zone, an expansion of 

(,x) is carried out first using Taylor series. Consider the collocation point is , the 
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field point is x and the point at which the series expansion is performed is xo. Assume 

that the distance x-xo -xo (see Fig.(3.1)), then the expansion of (,x) presented 

in Eq.(2.25) could be formed as follows: 
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Where 
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)xx( ko  represent the kth component of the vector )xx( o , and 
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Substituting Eq. (3.1) into Eq. (2.34), and carrying out the necessary derivations, the 

expansion form of the generalized displacement kernel Uij(,x) can be obtained as 

follows: 
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As it will be discussed later in this thesis, only terms up to the second derivatives for 

the former expansion are enough to produce excellent accuracy. Therefore, the 

required derivatives (first and second) are developed as follows: Recall Eq. (2.25), and 

Eqs.(2.38) to (2.40), the first derivatives of the generalized displacement kernels at 

point x in Eq. (3.2) can be obtained as follows: 
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The second derivatives of the generalized displacement kernels can be obtained as 

follows: 
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Similar to expansions of generalized displacement kernels, the expansion forms of the 

moment and shear kernels can be represented as follows: 
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The required derivatives in Eqs.(3.9) to (3.12) for both moment and shear 

kernels up to the second derivatives are obtained as follows: Recall Eqs.(2.41), (2.46), 

(2.51), and (2.55), the first derivatives of moment and shear kernels at point x can be 

obtained as follows: 
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The second derivatives of moment and shear kernels can be obtained as follows: 
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The expansions for traction kernels can be also developed using Eqs.(2.42), (2.47), 

(2.52) and (2.56), as follows: 
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3.4. Moments coefficients  

For each collocation boundary point  in fast multi-pole procedure, the total 

boundary (Γ) is divided into two zones; the near-field boundary (Γnf), and the far-field 

boundary (Γff). Using the expansions mentioned in the previous section, the kernels 

calculations in the far-field boundary are rapidly converged when only few terms of 

the expansions are used. It has to be noted that these expansions cannot give the same 

convergence for near-field elements; therefore, the direct calculations are then used. 

Thus, using the expansion form for generalized displacement kernel given in Eq. (3.2) 

for far-field boundaries, the integration of generalized displacement kernel given in 

Eq. (2.6) can be decomposed into the following terms: 
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Consider the far field boundary to have Nfar number of constant elements and 

identifying the traction multi-pole moment coefficients for each element n of them as: 
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Thus, Eq.(3.25) can be rewritten in the following form: 
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Similarly, by using the expansion forms for moment and shear kernels obtained from  

Eqs.(3.9) to (3.12), the integration of traction kernels given in Eq.(2.6) can be 

decomposed into the following terms: 
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For each element n, defining the following generalized displacement multi-pole 

moment coefficients: 
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Hence, Eq. (3.29) can be rewritten in the following form: 
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As it can be seen from the expanded integral forms in  Eqs.(3.28) and (3.32), 

the multi-pole moment coefficients are independent of the source point, . As a result, 

these coefficients can be calculated only once for every iteration in the solution of the 

problem, in which the boundary unknowns are obtained from the earlier cycle of 

iterative solution.  On the other hand, the evaluations of the near-field integrals are 

carried out using the conventional direct BEM scheme [62], i.e. as in Eq. (2.6) and 

(2.17). 

In order to implement the FMM, a hierarchical tree of clusters (or cells) is 

needed to be defined. For each collocation point, the far-field elements can be 

partitioned into many cells, which belong to different levels. Then, the moment 

coefficients at each element, C, (see Fig.(3.1)) are evaluated with respect to the cell 

center on the lowest level (the so-called leaf). After that, a grouping of multi-pole 

moment coefficients occurs from the center of leaves  (as at point xo) progressively to 

the center of higher level cell (as at point xp) which is known as  moment to moment 

coefficients , O, as can be seen in Fig.(3.2). Then, a direct evaluation for these 

moment coefficients to the collocation point (local path L) is performed to complete 

the equivalent summations for far-field kernel expansions. The whole process is then 

called as “first shift” or Barnes and Huts’ scheme [38]. In the following sections, the 

stages of moments grouping and moment to moment transferring will be discussed. 
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Fig. 3.1: Schematic diagram for the fast multi-pole far-field collocation. 
 

 

Fig. 3.2: Schematic diagram for the fast multi-pole far-field collocation. 
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3.5. Moments grouping 

The expansion terms of the kernels (moments C) related to elements that are far 

enough from the collocation point are grouped in such a way, that the corresponding 

expansions can be carried out without losing accuracy [37]. The grouping starts from 

the leaves, where only elements are grouped at their lowest cell center as shown in 

Fig.(3.1). Consider the total number of elements in the leaves is Nl elements, and the 

total number of cells (leaves) in this level are L, then Eqs.(3.28), and (3.32) can be 

rewritten as follows: 
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(3.34) 

Where m denotes the element number within the leaf cell, and l denotes the leaf 

number. 

 

3.6. Moment to moment transferring 

In order to minimize calculation operations, the fast multi-pole tree is designed 

so that the moment coefficients are obtained at higher levels.  Therefore, for each 

collocation point, the far-field boundary elements which belong to leaves (their 

centers are at xo) will then be transformed at the higher level cells (their centers are at 
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xp) [37]. This process will be repeated for each two successive levels up to the highest 

level. Transformation process is obtained by applying extra Taylor expansions at cell 

centers of higher levels. Therefore,  Eqs. (3.33, 3.34) will be modified to be written at 

higher level as follows: 
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where  Nc is the number of cells at the higher levels that have the transferred moments 

from the lower level of Nl elements. The moments to moment transfer coefficients c
tO  

and c
uO at the higher level are given by [52]: 
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It has to be noted that the infinite series in Eqs. (3.37) and (3.38) are truncated after a 

certain number of terms to obtain the desired accuracy. As will be proven through 

numerical examples in chapter (5), only up to three expanded terms (S=3) is enough to 

obtain an adequate accuracy for original expanded functions. 

 

3.7. Final collocation and matrix form 

As illustrated before in the present algorithm, the fundamental solution kernels 

for generalized displacements and tractions are calculated using two different parts: 

the near-field element integrations (via the conventional direct BEM), and the far-field 

element summations (via the FMM). If this process is repeated at every collocation 

point on the boundary (i.e. N times), the resulted algorithm will reduce the 

computational complexity from O(N3)to be O(N log N), and the corresponding 

modified system of equations can be written as follows: 

       far

N

near

N
near

NN

far

N

near

N
near

NN 131333131333 ][][   GttGHuuH                                (3.39) 

 
where {Hu}far and {Gt}far are vectors denote an implicit evaluation of the matrix-

vector  multiplication in the far-field regions; [H]{u}and [G]{t}respectively. 

Reordering Eq. (3.39) for separating boundary unknowns (appears only at near fields) 

from boundary known values added with other calculated vectors for far fields, the 

following system of equations will be formed as: 
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NN
new

NN 131333][   BxA                (3.40) 

It has to be noticed that the matrix [A]newin Eq. (3.40) is sparse. This advantage 

facilitates the using of iterative solutions for the resulted system of matrices. Thus, Eq. 

(3.40) is solved using any suitable iterative solver such as the GMRES [53]. In the 

first iteration of solution, unknown boundary values in far-fields are set to zeros in 

order to evaluate initial values of the {B}new vector. After solving the first iteration, the 

values of {x}will be used to describe the values of boundary unknowns at far-fields 

regions in the second iteration. The procedure is repeated until results of {x} 

converges and reaches a prescribed tolerance. 
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3.8 Conclusions 

In this chapter, the fast multi-pole expansion is applied to the boundary element method 

for shear deformable plate bending problems, as the conventional BEM is not efficient 

in solving large-scale problems containing large number of degrees of freedoms. In 

such problems, the fast multi-pole method when accompanied with iterative solvers 

(GMRES) has succeeded to substantially decrease the computational time to be O(N 

log N) instead of O(N2). In next chapter, the FMM technique is implemented into 

compute code to solve numerical problems. 
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Chapter 4: Programing for the proposed FMM 

4.1. Introduction 

In this chapter, the main structure of the proposed FMM code for solving plate 

bending problems is introduced. This code is written in FORTRAN language and is 

provided in Appendix (A).In this program; constant elements are employed to 

approximate the line integrals. This FMM code for general plate bending problems 

can be used as a basis to develop FMM programs 2nd shift and for using higher order 

elements. Section 4.2, represents the program’s sequence and the main subroutines in 

flowchart. In section 4.3, the purpose of each subroutine is explained.   

4.2. Work flow process 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                               Figure 4.1.  Flowchart for a FMM program. 

Start the program,  
Initiate parameters and call FMM 

BEM (fmmmain subroutine) 

Reading the input files by 
(prep_model subroutine) 

Divide the input geometry and 
establish the tree structure by 

(tree subroutine) 

Calculate the R.H.S. of (�� = �) 
and matrix (�) by (fmmbvector 

subroutine)  

upward subroutine 

dwnwrd subroutine 

moment subroutine 

direct subroutine 

Call GMRES solver by (dgmres 
subroutine)  

Print the results  

Program End  

msolve subroutine 

matvec subroutine 

upward subroutine 

dwnwrd subroutine 

M2P subroutine 
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The flowchart of this fast multi-pole BEM code is given in fig.(4.1). The chart shows 

the main tasks and sequences for the program and the related subroutines. The 

program for the fast multi-pole BEM is more complicated than the program of 

conventional BEM because of the tree structure of the cells and various expansions. 

With the restrictions of the GMRES solver, a large array is needed to be developed in 

the program to pass the variables to the GMRES solver. A few important subroutines 

in the program are discussed in the following subsections.   

 

4.2.1 Subroutine fmmmain 

The fmmmain subroutine starts with calling prep_model, which reads in the data for 

the boundary nodes, elements, boundary conditions, and field (interior) points from 

file input.dat(a sample file is given in Appendix (A.1)) and the additional parameters 

used in the fast multi-pole expansions and solver GMRES from file input.fmm (a 

sample file is given in Appendix( A.2)). It then generate the tree structure, computes 

the right hand side {b} vector, solves the system of equation (Aλ = b) using the 

GMRES solver, computes values at interior points, and finally print the results. 

 

4.2.2 Subroutine tree 

This subroutine is an essential piece of the entire code. By calling the subroutine tree, 

the quad tree structure for the elements is created. The information of the tree 

structure is stored in several arrays in the code. To understand how this subroutine is 

used to create the tree structure, refer to the BEM model shown in fig.(4.2). 

Cells in the tree structure are numbered in the following way: the largest cell at level 0 

is called cell 1, the four cells at level 1 are numbered 2,3,4 and 5 respectively, 

according to order 0,1,2,3 as shown in the side box in fig.(4.2). This operation is 

continuing in this way to reach all the leaves (leaf is the cell which contains the 

maximum number of nodes per cell and the maximum number of nodes per cell is 

user input). This subroutine is automatically ignore all cells have no elements. The 

model shown in fig.(4.2) consists of 30 nodes and each node refers to one constant 

element and the numbering of cells according to tree structure can show in fig.(4.3).  
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Figure 4.2 A cell structure covering all the boundary elements. 
Taken from Liu[37]. 

 
 

 
     Figure 4.3 Cell number for level 0, 1 and 2 for the model. 

Taken from Liu[37]. 



 

47 
 

 
 
The tree code sort the coordinates of each node in different arrays, the center of each 

cell and the relation between cells like which cell is the leaf and which is the parent of 

it and which is called neighbor of it. This relation between cells can be cleared in the 

fig. (4.4).All arrays which filled by all this information are sort in a large array and 

this operation is a step for preparing the information array to the iterative solver 

GMRES. 

 
Figure 4.4 The relation between cells in the tree structure. 

Taken from Liu[37]. 
 

The tree subroutine is main subroutine which addresses the input data to use in the 

FMM algorism. 

4.2.3 Subroutine fmmbvector 

The main purpose of fmmbvector subroutine is to compute the right hand side {B} 

vector by using the fast multi-pole algorism. The right hand side is computed by 

calling the upward subroutine and the dwnwrd subroutine. The calculation of the {B} 

vector requires calculating the conventional BEM coefficient by using the FMM 

algorism. By using the novel algorism in computing the right hand side can save the 

CPU time and minimize the complexity of code from O(N2) in the conventional BEM 

to O(N log N ) when using the first shift in FMM algorism and O(N) when using the 
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second shift in FMM algorism. But with make the complexity of code lower, the use 

of iterative solver (GMRES) is mandatory. 

 

4.2.4 Subroutine dgmres 

The dgmres subroutine is the GMRES solver in the SLATEC package from 

www.netlib.org. It is not required to understand the inner workings of this GMRES 

iterative solver to apply this subroutine. To use this GMRES solver, only two 

subroutines are needed to be prepared: msolve and matvec, which are two external 

subroutines for dgmres [37]. 

4.2.5 Subroutine msolve 

          This subroutine is called by dgmres subroutine to prepare the preconditioning 

matrix that will be used by GMRES solver. The preconditioning matrix is calculated 

once in the first iteration and the diagonal block matrix stored in the rwork array and 

the related information like size and the location of diagonal block is stored in the 

iwork array.   

4.2.6 Subroutine matvec  

          The matvec subroutine is providing the algorism for the matrix vector 

multiplication using the fast multi-pole algorisms by simply calling the upward and 

dwnwrd subroutines using the values for the solution vector from the previous 

iteration [37].  

4.2.7 Subroutine upward  

          The upward subroutine is calculating the moment expansion in each leaf (the 

cell which has the maximum number of node defined by user) in the tree structure by 

calling moment subroutine and grouping all these moments by moment to moment 

expansion and climbing to the parent cell in the higher level and so on to reach level 2 

in the tree and store these calculations in [a] matrix. 

4.2.8 Subroutine dwnwrd  

The dwnwrd subroutine is calculating the coefficient of [G] and [H] kernels. These 

calculations achieved by two ways in this subroutine depend on the position of cells. 
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For near cells, calculation achieved typically as the conventional BEM by calling 

direct subroutine. For far cells, the coefficient calculated by using the FMM 

expansions by calling M2P subroutine when using the first shift which use the values 

in [a] matrix in M2P expansion to get the coefficient which stored in [b] matrix.  

 

4.3 Conclusions 

In this chapter, the FORTRAN code of the fast multi-pole method was discussed. The 

operation scheme of the main program was illustrated.  Also, the input and output data 

of each subroutine were explained. The FORTRAN code, its input files and output 

files are presented in Appendix (A). In the next chapter, the developed program is 

investigated through some numerical examples in order to test the validity of the 

proposed FMM against analytical solutions, and conventional BEM solutions.  
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Chapter 5: Numerical Examples 

5.1 Introduction 

In this chapter, two different examples with different boundary conditions are 

selected to demonstrate the accuracy and efficiency of the proposed fast multi-pole 

formulation. As mentioned before, Taylor expansions using any number of terms 

could be used, however numerical results proved that up to three terms are enough to 

obtain results with excellent accuracy. In all problems, the platform for obtaining the 

present results is a 2.0-GHz Intel® Pentium® Core2Due with 2 GB RAM. 

5.2 Cantilever plate 

 
 The (20m5m) rectangular cantilever plate shown in Fig.(5.1) is considered. 

The cantilever has thickness of 0.3 m and is fixed along one of its short sides. It is 

loaded by edge loading of intensity 1.5 t/m as shown in Fig.(5.1). The used material 

properties are: The Young’s modulus E = 3.0×107 t/m2, and the Poisson’s ratio is set 

to zero to allow comparison against the analytical solutions of the beam theory.  The 

problem boundary is discretized into many meshes vary from 100 to 1000 constant 

elements. The results for the generalized displacements at point (A) are evaluated 

using analytical solution and also obtained from the conventional direct boundary 

element method as well as obtained from the proposed FMM. The comparison 

between all results for rotation and deflection are presented in Table (5.1).From Table 

(5.1), it can be seen that the rotation and deflections values solved by the proposed 

FMM using 2 or 3 terms are in excellent agreement with those obtained from the 

conventional BEM. Both results agree with the analytical solutions for all studied 

cases which illustrate the accuracy of the proposed FMM technique. 

In order to demonstrate the strength of the proposed FMM, a comparison is 

carried out between the conventional BEM and the fast multi-pole BEM using 2 and 3 

terms. In this comparison, the CPU time needed to solve problems having different 

boundary element discretization is computed. The comparison is plotted in Fig.(5.2). 

As it can be seen from the Fig.(5.2), a substantial saving of elapsed time is achieved 
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when the problem is solved by the proposed FMM, whether the selected terms are 2 or 

3. As the number of elements of the problem increases, the proposed FMM is much 

more efficient compared to the conventional BEM, which enables the boundary 

element method to be used in solving large-scale practical plate bending problems.

Fig. 5.1:  The considered cantilever plate. 

 

Fig. 5.2:   Comparison of CPU time between the proposed FMM and the conventional 
BEM for the cantilever plate. 
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Table (5. 1): Results of rotation and deflection of point (A) in the cantilever plate. 

Numbers 
 of  

elements 
Mesh 

Analytical 
solution 

(rotation) 

Proposed FMM (rotation) Conventional 
BEM (rotation) 

Analytical 
solution 

(deflection)  

Proposed FMM (deflection) Conventional 
BEM (deflection) 

2-terms 3-terms 2-terms 3-terms 

50 20x5 

0.004444 

0.004244 0.004358 0.004414 

-0.059259 

-0.060112 -0.059364 -0.059837 

100 40x10 0.004337 0.004448 0.004489 -0.060460 -0.059713 -0.060066 

120 50x10 0.004334 0.004444 0.004492 -0.060265 -0.059559 -0.059969 

140 50x20 0.004344 0.004454 0.004502 -0.060395 -0.059694 -0.060106 

174 62x25 0.004386 0.004495 0.004537 -0.060766 -0.060070 -0.060431 

200 80x20 0.004338 0.004445 0.004491 -0.060153 -0.059443 -0.059837 

250 100x25 0.004328 0.004437 0.004484 -0.060021 -0.059330 -0.059738 

300 100x50 0.004334 0.004443 0.004491 -0.060078 -0.059395 -0.059804 

366 133x50 0.004338 0.004444 0.004491 -0.060089 -0.059382 -0.059780 

500 200x50 0.004345 0.004421 0.004465 -0.059777 -0.059117 -0.059497 

666 267x66 0.004317 0.004424 0.004469 -0.059852 -0.059148 -0.059535 

1000 400x100 0.004303 0.004381 0.004429 -0.059701 -0.058957 -0.059349 
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5.3 Slab with circular opening 

 
The square slab of side length 6m shown in Fig.(5.3) is considered in this 

example. The slab is fixed along two opposite sides whereas the other two sides are 

free and loaded with line load of 10 t/m and line moments of 30 t.m/m. The slab is 

also having a circular opening on which a line load of 5 t/m is applied as shown in 

Fig.(5.3). The slab thickness is 0.35 m and its material properties are: E = 2.5×106 

t/m2, = 0.2. Only one quarter of the slab is solved due to problem symmetry. The 

problem boundary is discretized into several number of boundary elements vary from 

100 to 1000 elements.  

Table (5.2) and Table (5.3) demonstrate a comparison for generalized 

displacements results (rotations about two directions and deflection) at points (A) and 

(B) respectively. The values obtained based on the proposed FMM are compared 

against those of conventional BEM. As it can be seen from the results, the proposed 

FMM achieved accurate evaluation of boundary values against conventional 

numerical method when expanding the kernel series with only three terms. On the 

other side, Fig.(5.3) demonstrates the elapsed CPU times for both conventional BEM 

and the proposed FMM. The figure illustrate that the time needed to solve the problem 

using the proposed FMM with 2 or 3 terms are extremely small when compared with 

the time consumed using the conventional BEM. This difference can be easily 

observed for large problems with large number of boundary elements which appear in 

case of practical applications. 
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 Fig. 5.3:  The considered squared slab with circular opening.
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Table (5. 2): Generalized displacements of point (A) in the squared slab. 

Number 
 of  

elements 

Proposed FMM  
(U1) Conventional 

BEM (U1) 

Proposed FMM  
(U2) Conventional 

BEM (U2) 

Proposed FMM  
(U3) Conventional 

BEM (U3) 

2-terms 3-terms 2-terms 3-terms 2-terms 3-terms 

86 -0.00003961 -0.00003154 -0.00003162 -0.00001733 0.00008584 0.00009074 -0.00044045 -0.00043475 -0.00043585 

218 -0.00004200 -0.00003544 -0.00003451 -0.00001798 0.00004310 0.00008901 -0.00043752 -0.00041660 -0.00043448 

490 0.00000689 -0.00002275 -0.00002380 0.00003331 0.00008437 0.00008710 -0.00045897 -0.00044716 -0.00044749 

590 0.00001164 -0.00002233 -0.00002336 0.00004306 0.00008469 0.00008692 -0.00045934 -0.00044770 -0.00044794 

818 0.00002021 -0.00002141 -0.00002336 0.00005820 0.00008470 0.00008692 -0.00046043 -0.00044770 -0.00044794 

980 0.00001998 -0.00002163 -0.00002272 0.00005846 0.00008486 0.00008666 0.00005846 -0.00044853 -0.00044863 

 
 
 
 
Table (5. 3): Generalized displacements of point (B) in the squared slab. 

Number 
 of  

elements 

Proposed FMM  
(U1) ×10-5 rad Conventional 

BEM (U1) 

Proposed FMM  
(U2) ×10-3 rad Conventional 

BEM (U2) 

Proposed FMM  
(U3) Conventional 

BEM (U3) 

2-terms 3-terms 2-terms 3-terms 2-terms 3-terms 

86 -3.96074600 -3.15374270 -3.16187550 -1.73349710 8.58433060 9.07424320 -44.04462800 -43.47479000 -43.58481500 

218 -4.19958380 -3.54390100 -3.45054030 -1.79759840 4.30957740 8.90142320 -43.75170900 -41.66021200 -43.44762000 

490 0.68921429 -2.27532660 -2.38010790 3.33125430 8.43742790 8.70958820 -45.89665900 -44.71621500 -44.74934500 

590 1.16381970 -2.23265740 -2.33645760 4.30606170 8.46881390 8.69158620 -45.93357100 -44.77021100 -44.79433100 

818 2.02115950 -2.14077300 -2.33645760 5.81962910 8.47017120 8.69158620 -46.04255200 -44.77021100 -44.79433100 

980 1.99768990 -2.16299760 -2.27172010 5.84576820 8.48626480 8.66572580 5.84576820 -44.85285400 -44.86254500 
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Fig. 5.4:  Comparison of CPU time between the proposed FMM and the conventional 
BEM for the squared slab. 

 

5.4 Conclusions 

This chapter discussed, in a practical way, the benefits of applying FMM technique to 
conventional BEM equations. Results in tables prove that the solution accuracy was 
not affected by introduction of FMM. Charts prove that FMM technique leads to faster 
computation than conventional BEM. 
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Chapter 6: Summary and Conclusions 

6.1 Summary 

 In this thesis, the fast multi-pole expansion technique was applied to the 

boundary element method for shear deformable plate bending problems. As the 

conventional method is suitable for medium problems with simple geometry but it is 

not efficient in solving large-scale problems containing large number of degrees of 

freedoms. In such problems, the fast multi-pole method when accompanied with 

iterative solvers (GMRES) had succeeded to substantially decrease the computational 

time. To validate the proposed formulation, two numerical examples with different 

boundary conditions were presented. A comparison of the computational time and 

results accuracy of the proposed FMM against analytical and conventional BEM 

solutions were carried out. As illustrated in these numerical tests, only few expansion 

terms (three terms) were needed to obtain results with high accuracy.   

6.2 Conclusions 

 The main idea of the fast multi-pole BEM is to replace the element to element 

interactions, which are costly to compute, with cell to cell interactions through the 

introduction of the fast multi-pole expansions of the fundamental solution kernels. 

Thus, in the proposed application of FMM technique the number of collocation 

operations is reduced. In addition, when the fast multi-pole technique is applied to the 

conventional BEM, the coefficient matrix is changed from fully populated matrix to 

sparse matrix with band width related to the number of nodes per leaf cell. This 

change enables to minimize the complexity and also saving the CPU time and 

memory. Application of FMM technique to direct boundary element solution of plates 

proved to preserve the boundary elements accuracy with improved solution time. This 

application opens the way for application of parallel programming to BEM. 
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6.3 Future work 

 The proposed method is promising -when extended- to open the way for 

solution of large-scale practical problems. In order to achieve more in this research 

trend, a future work considering the fast multi-pole local expansions -which is known 

as “second shift”- besides upgrading the boundary elements to be quadratic and add 

the contribution of domain loads and internal stiffness conditions are suggested to be 

investigated. Also, the representation of the problem with quadratic elements instead 

of constant elements will be more accurate and can be one of the future work points. 

The precondition sparse matrix give a chance to use multi thread programing or GPU 

programing to save more time and print the result of large scale problem in no time. 

The fast multi-pole algorism can apply in any method using mesh to simulate its 

problem like finite element method. 
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APPENDIX   A 

Sample computer program 

 

A.1 A fortran code of the fast multi-pole method for plate bending problems. 

The following is a list of the source code written in the FORTRAN for the 

program discussed in section 4.2for plate bending problems using the fast multi-pole 

BEM. 

c Program:Plate_Bending_FMM-Afast multi-pole boundary element 

c Method(BEM)code for analyzing large-scale,general 

c Plate Bending problems using constant elements. 

      Program  Plate_Bending 

 

c     implicit real*8 (a-h,o-z) 

 IMPLICIT DOUBLE PRECISION (A-H) 

      IMPLICIT DOUBLE PRECISION (O-Z) 

      integer, allocatable ::ia(:) 

      complex*16, allocatable ::am(:)  

C== Note that AUU=(no., of ele,no. , of cells ,no.,of terms in equations) 

 DOUBLE PRECISION, DIMENSION (3500,16,135)::AUU !max @ 5 terms of auu=279   

 DOUBLE PRECISION, DIMENSION (3500,16,180)::AMM !max @ 5 terms of amm=372   

 DOUBLE PRECISION, DIMENSION (3500,16,90)::AQQ   !max @ 5 terms of aqq=186   

 DOUBLE PRECISION, DIMENSION (30000)::coG 

 DOUBLE PRECISION, DIMENSION (30000)::coH 

 character*80 Prob_Title 

 COMMON/MATRIX/AUU,AMM,AQQ 

 COMMON/GHdirect/coG,coH 

 COMMON/BASICBLOCK/ T,XNU,E,NSUB 

 COMMON/BASICLOAD/ QLOAD 

      COMMON/FILEBLOCK/ Specr1,Specr2 

 QLOAD=0.d0 

 Specr1=0.d0 ; Specr2=0.d0 

 

       

      call CPU_Time(time0) 

 

c  ============================================== 

      open (4,file='input.fmm',status='old') 
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      open (5,file='input.dat',status='old') 

      open (3,file='output.dat',status='unknown') 

c      open (7,file='phi_boundary.plt',status='unknown') 

c      open (8,file='xy.plt', status='unknown') 

c      open (9,file='phi_domain.plt',status='unknown') 

c open (11,file='to_solve.plt',status='unknown') 

c open (12,file='MAINMATRIX.plt',status='unknown') 

c OPEN (13,FILE='GOUT.XLS') 

c open (15,file='to_print.plt',status='unknown') 

c Input the parameters 

      read(4,*)        maxl, levmx, nexp, ntylr, tolerance 

      read(4,*)        maxia, ncellmx, nleafmx, mxl, nwksz 

 read(4,*)        maxt 

      read(5,'(a80)')  Prob_Title 

      read(5,*)        T,XNU,E,NSUB,n,nfield,Qload 

      write(3,'(a80)') Prob_Title 

      write(*,'(a80)') Prob_Title 

  

c Estimate the maximum numbers of the cells and leaves, 

c and size of the preconditioning matrix,etc. 

      if(ncellmx.le.0)ncellmx = max(4*n/maxl,100) 

      if(nleafmx.le.0)nleafmx = max(ncellmx/2,100) 

      if(nwksz.le.0)nwksz = maxl*maxl*nleafmx 

      ligw = 3*n 

      lrgw = 1+3*n*(mxl+6)+mxl*(mxl+3) 

      iwksz = 3*n+3*nleafmx+1 

      allocate (ia(maxia)) 

c Load the addresses (pointers) associated with the locations of the 

c variables to be stored in the large array"am" 

      call lpointer(lp,ln,maxia,ia,n,nexp,maxt,ntylr,ncellmx, 

     &       levmx,ligw,lrgw,nwksz,iwksz,nfield, 

     &       l_n,l_x,l_y,l_node,l_dnorm, 

     &       l_bc,l_a,l_b,l_xmax, 

     &       l_xmin,l_ymax,l_ymin,l_ielem,l_itree, 

     &       l_level,l_loct,l_numt,l_ifath,l_lowlev, 

     &       l_maxl,l_levmx,l_nexp,l_ntylr,l_tolerance, 

     &       l_ncellmx,l_nleafmx,l_mxl,l_u,l_ax, 

     &       l_sb,l_sx,l_ligw,l_lrgw,l_igwk, 

     &       l_rgwk,l_nwksz,l_iwksz,l_rwork,l_iwork, 

     &       l_xfield,l_nfield,l_f,l_maxt) 
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c Estimate the memory usage 

      maxa = lp 

      write(3,100) maxa*16/1.D6 

      write(*,100) maxa*16/1.D6 

  100 format('  Memory size of the large block am =',f12.1, 'Mb'/) 

c Allocate the large block 'am' 

      allocate (am(maxa)) 

c Assign the parameters to the array am() 

      call assigni(n,          am(l_n)) 

      call assigni(maxl,       am(l_maxl)) 

      call assigni(levmx,      am(l_levmx)) 

      call assigni(nexp,       am(l_nexp)) 

 call assigni(maxt,       am(l_maxt)) 

      call assigni(ntylr,      am(l_ntylr)) 

      call assignd(tolerance,  am(l_tolerance)) 

      call assigni(ncellmx,    am(l_ncellmx)) 

      call assigni(nleafmx,    am(l_nleafmx)) 

      call assigni(mxl,        am(l_mxl)) 

      call assigni(ligw,       am(l_ligw)) 

      call assigni(lrgw,       am(l_lrgw)) 

      call assigni(nwksz,      am(l_nwksz)) 

      call assigni(iwksz,      am(l_iwksz)) 

      call assigni(nfield,     am(l_nfield)) 

c Call the FMM BEM main program 

      call fmmmain(maxa,maxia,am,ia, 

     &       am(l_n),am(l_x),am(l_y),am(l_node), 

     &       am(l_dnorm),am(l_bc),am(l_a),am(l_b), 

     &       am(l_xmax),am(l_xmin),am(l_ymax),am(l_ymin), 

     &       am(l_ielem),am(l_itree),am(l_level),am(l_loct), 

     &       am(l_numt),am(l_ifath),am(l_lowlev),am(l_maxl), 

     &       am(l_levmx),am(l_nexp),am(l_ntylr),am(l_tolerance), 

     &       am(l_ncellmx),am(l_nleafmx),am(l_mxl),am(l_u), 

     &       am(l_ax),am(l_nfield),am(l_xfield),am(l_f), 

     &       am(l_sb),am(l_sx),am(l_igwk),am(l_rgwk), 

     &       am(l_ligw),am(l_lrgw),am(l_nwksz),am(l_iwksz), 

     &       am(l_rwork),am(l_iwork),am(l_maxt)) 

c Estimate the total CPU time 

      call CPU_Time(time) 

      write(3,*) 

      write(*,*) 
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      write(3,20) time-time0      !'Total CPU time used =',time-time0,'(sec)' 

      write(*,20) time-time0      !'Total CPU time used =',time-time0,'(sec)' 

   20 format(' Total CPU time used  =',(f12.3),'(sec)') 

      stop 

      end 

c Definition of Variables: 

c 

c maxa  = maximum size of the array am 

c maxia = maximum number of variables allowed 

c am    = a large array storing the variables for the SLATEC GMRES solver 

c ia    = an array storing the locations of the variables in the array am 

c 

c n     = number of elements(= number of nodes) 

c x     = coordinates of the nodes 

c y     = coordinates of the endpoints ofthe elements 

c node  = element connectivity 

c dnorm = normal at each node 

c bc    = BC type and value 

c 

c a         = multipoleexpansionmoments 

c b         = local expansion coefficients 

c xmax,xmin = maximum and minimum x coordinate 

c ymax,ymin = maximum and minimum y coordinate 

c ielem     = ielem(i) gives the original element number for i-the element in 

c           the quad-tree structure 

c itree     = itree(c)givesthecelllocationofc-thcellwithineach 

c           tree level 

c loct      = elements included in the c-the cell are listed starting at 

c           the loct(c)-the place in the array ielem 

c numt      = numt(c)givesthenumberofelementsincludedinthec-thcell 

c ifath     = ifath(c)givesthenumberoftheparentcellofthec-thcell 

c level     = levellcellsstartatthelevel(l)-thcellinthetree 

c lowlev    = numberofthetreelevels 

c 

c maxl      = maximum number of elements allowed in aleaf 

c levmx     = maximum number of levels allowed in the tree structure 

c nexp      = number of terms in multipole expansion 

c ntylr     = number of terms in local expansion 

c tolerance = GMRES solution convergence tolerance 

c ncellmx   = maximum number of cells allowed in the tree 
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c nleafmx   = maximum number of leaves allowed in the tree 

c mxl       = maximumdimensionofKrylovsubspace(usedinGMRES) 

c 

c u         = firststoresbvector;thensolutionvectorofsystemAx = b 

c ax        = resultingvectorofmultiplicationAx 

c nfield    = number of the field points inside the domain 

c xfield    = coordinates of the field points inside the domain 

c f         = valuesofthepotentialatthefieldpointsinsidethedomain 

c 

c The following variables and arrays are used in the SLATEC GMRES solver: 

c      sb,sx,igwk,rgwk,ligw,lrgw,nwksz,iwksz,rwork,iwork 

 

      subroutine lpointer(lp,ln,maxia,ia,n,nexp,maxt,ntylr,ncellmx, 

     &            levmx,ligw,lrgw,nwksz,iwksz,nfield, 

     &            l_n,l_x,l_y,l_node,l_dnorm, 

     &            l_bc,l_a,l_b,l_xmax, 

     &            l_xmin,l_ymax,l_ymin,l_ielem,l_itree, 

     &            l_level,l_loct,l_numt,l_ifath,l_lowlev, 

     &            l_maxl,l_levmx,l_nexp,l_ntylr,l_tolerance, 

     &            l_ncellmx,l_nleafmx,l_mxl,l_u,l_ax, 

     &            l_sb,l_sx,l_ligw,l_lrgw,l_igwk, 

     &            l_rgwk,l_nwksz,l_iwksz,l_rwork,l_iwork, 

     &            l_xfield,l_nfield,l_f,l_maxt) 

 dimension ia(maxia) 

      lp = 1 

      l_n         = l_address(1,maxia,ia,lp,4,1) 

      l_x         = l_address(2,maxia,ia,lp,8,n*2) 

      l_y         = l_address(3,maxia,ia,lp,8,n*2) 

      l_node      = l_address(4,maxia,ia,lp,4,n*2) 

      l_dnorm     = l_address(5,maxia,ia,lp,8,n*2) 

      l_bc        = l_address(6,maxia,ia,lp,8,n*2*3)  !i change *3 

      l_a         = l_address(7,maxia,ia,lp,16,(nexp+1)*ncellmx) 

      l_b         = l_address(8,maxia,ia,lp,16,(ntylr+1)*ncellmx) 

      l_xmax      = l_address(9,maxia,ia,lp,8,1) 

      l_xmin      = l_address(10,maxia,ia,lp,8,1) 

      l_ymax      = l_address(11,maxia,ia,lp,8,1) 

      l_ymin      = l_address(12,maxia,ia,lp,8,1) 

      l_ielem     = l_address(13,maxia,ia,lp,4,n) 

      l_itree     = l_address(14,maxia,ia,lp,4,ncellmx) 

      l_level     = l_address(15,maxia,ia,lp,4,levmx+1) 
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      l_loct      = l_address(16,maxia,ia,lp,4,ncellmx) 

      l_numt      = l_address(17,maxia,ia,lp,4,ncellmx) 

      l_ifath     = l_address(18,maxia,ia,lp,4,ncellmx) 

      l_lowlev    = l_address(19,maxia,ia,lp,4,1) 

      l_maxl      = l_address(20,maxia,ia,lp,4,1) 

      l_levmx     = l_address(21,maxia,ia,lp,4,1) 

      l_nexp      = l_address(22,maxia,ia,lp,4,1) 

      l_ntylr     = l_address(23,maxia,ia,lp,4,1) 

      l_tolerance = l_address(24,maxia,ia,lp,8,1) 

      l_ncellmx   = l_address(25,maxia,ia,lp,4,1) 

      l_nleafmx   = l_address(26,maxia,ia,lp,4,1) 

      l_mxl       = l_address(27,maxia,ia,lp,4,1) 

      l_u         = l_address(28,maxia,ia,lp,8,n*3) !i change *3 

      l_ax        = l_address(29,maxia,ia,lp,8,n*3)  !i change *3 

      l_sb        = l_address(30,maxia,ia,lp,8,n) 

      l_sx        = l_address(31,maxia,ia,lp,8,n) 

      l_ligw      = l_address(32,maxia,ia,lp,4,1) 

      l_lrgw      = l_address(33,maxia,ia,lp,4,1) 

      l_igwk      = l_address(34,maxia,ia,lp,4,ligw) 

      l_rgwk      = l_address(35,maxia,ia,lp,8,lrgw) 

      l_nwksz     = l_address(36,maxia,ia,lp,4,1) 

      l_iwksz     = l_address(37,maxia,ia,lp,4,1) 

      l_rwork     = l_address(38,maxia,ia,lp,8,nwksz) 

      l_iwork     = l_address(39,maxia,ia,lp,4,iwksz) 

      l_xfield    = l_address(40,maxia,ia,lp,8,nfield*2) 

      l_nfield    = l_address(41,maxia,ia,lp,4,1) 

      l_f         = l_address(42,maxia,ia,lp,8,nfield) 

 l_maxt      = l_address(43,maxia,ia,lp,4,1) 

c write(*,*)   lp,ln,maxia,ia,n,nexp,ntylr,ncellmx, 

c     &            levmx,ligw,lrgw,nwksz,iwksz,nfield, 

c     &            l_n,l_x,l_y,l_node,l_dnorm, 

c     &            l_xmin,l_ymax,l_ymin,l_ielem,l_itree, 

c     &            l_level,l_loct,l_numt,l_ifath,l_lowlev, 

c     &            l_maxl,l_levmx,l_nexp,l_ntylr,l_tolerance, 

c     &            l_ncellmx,l_nleafmx,l_mxl,l_u,l_ax, 

c     &            l_sb,l_sx,l_ligw,l_lrgw,l_igwk, 

c     &            l_rgwk,l_nwksz,l_iwksz,l_rwork,l_iwork, 

c     &            l_xfield,l_nfield,l_f 

c      pause 

      return 
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      end 

C============================================================ 

      integer function l_address(ln,maxia,ia,lp,ibyte,length) 

      dimension ia(maxia) 

      l_address = lp 

      ia(ln) = lp 

      iu = 16 

      inc = (ibyte*length-1)/iu+1 

      lp = lp+inc 

      if(ln.gt.maxia) then 

      write(*,*) '!Specified # of variables maxia',maxia,'is too small' 

      stop 

      endif 

      return 

      end 

c ======================================================== 

      subroutine assigni(i,ii) 

      integer i,ii 

      ii = i 

      return 

      end 

c============================================================ 

      subroutine assignd(h,hh) 

      real*8 h,hh        

        hh = h 

      return 

      end 

c============================================================ 

      subroutine fmmmain(maxa,maxia,am,ia,n,x,y,node,dnorm,bc, 

     &          a,b,xmax,xmin,ymax,ymin,ielem,itree,level,loct,numt, 

     &          ifath,lowlev,maxl,levmx,nexp,ntylr,tolerance,ncellmx, 

     &          nleafmx,mxl,u,ax,nfield,xfield,f,sb,sx,igwk,rgwk, 

     &          ligw,lrgw,nwksz,iwksz,rwork,iwork,maxt) 

      implicit real*8(a-h,o-z) 

C      real*8 am(maxa),a,b        !I change 

      complex*16 am(maxa),a,b 

      dimension ia(maxia),ja(1),a(0:nexp,ncellmx),b(0:ntylr,ncellmx), 

     &     x(2,n),y(2,n),node(2,n),dnorm(2,n),bc(2,3*n),    !I change 

     &     ielem(n),itree(ncellmx),level(0:levmx),loct(ncellmx), 

     &     numt(ncellmx),ifath(ncellmx),u(3*n),ax(3*n),sb(3*n),sx(3*n),!I change 
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     &     igwk(ligw),rgwk(lrgw),rwork(nwksz),iwork(iwksz), 

     &     xfield(2,nfield),f(nfield) !,G(3*N,3*N),H(3*N,3*N)   !I change 

C     &     ,AUU(N,N,279)  !I change 

      external matvec,msolve 

c Input parameters and prepare the BEM model 

      call prep_model(n,x,y,node,bc,dnorm,xfield,nfield,maxl,levmx,   

     &               nexp,tolerance,maxt,xmin,xmax,ymin,ymax)  !,ntylr 

 

C WRITE(*,*)xmin,xmax,ymin,ymax 

C DO I=1,N 

C WRITE(*,*) I,'X',dnorm(1,I),'XX',dnorm(2,I) 

C WRITE(*,*) I,'X',BC(1,3*I-1),'XX',BC(2,3*I-1) 

C WRITE(*,*) I,'X',BC(1,3*I),'XX',BC(2,3*I) 

C ENDDO 

C PAUSE 

 

c Generate the quad-tree structure for the elements 

      call tree(n,x,xmax,xmin,ymax,ymin,ielem,itree,level,loct,numt, 

     &         ifath,lowlev,maxl,levmx,ncellmx,nleafmx,nwksz,iwork)  

 

c DO I=1,36 

c WRITE(*,*) I,iwork(I)  !ifath(I),   

c ENDDO 

C PAUSE 

 

C CALL GHMATC(N,Y,X,G,H) !(N,Y(1,I),Y(2,I),X(1,I),X(2,I),G,H) I change 

C PAUSE 

c Compute the right-hand-side vector b with the FMM 

      call fmmbvector(n,x,y,node,dnorm,bc,u,ax,a,b,xmax,xmin,ymax,ymin, 

     &               ielem,itree,level,loct,numt,ifath,      !we here 

     &               nexp,ntylr,ncellmx,lowlev,maxl, 

     &               rwork,iwork,maxt) 

c WRITE(15,*) 'AUU(1,9,1)' 

c WRITE(*,*) AUU(1,9,1) 

c PAUSE 

c Solve the BEM system of equations Ax=b with the fast multipole BEM 

c Prepare parameters for calling the iterative solver GMRES 

c (SLATEC GMRES solver is used,which is available at www.netlib.org. 

c See the documentation for the SLATEC GMRES solver for more information 

c about the following related parameters) 
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C do i=1,36 !3*n 

C write(*,*)'rwork', rwork(i) 

C enddo 

C pause 

c DO I=1,50 

c WRITE(*,*) ja(I) 

c ENDDO 

c PAUSE 

      nelt    = 1 

      isym    = 0 

      itol    = 0 

      tol     = tolerance 

      iunit   = 3 

      igwk(1) = mxl 

      igwk(2) = mxl 

      igwk(3) = 0 

      igwk(4) = 1 

      igwk(5) = 10 

      do i=1,n 

c write(*,*)   ax(3*i-2) 

c write(*,*)   ax(3*i-1) 

c write(*,*)   ax(3*i) 

      ax(3*i-2)   = 0.d0 

 ax(3*i-1)   = 0.d0 

 ax(3*i)   = 0.d0 

      enddo 

c pause 

c do k=1,324 

c write(*,*) k,iwork(k),rwork(k) 

c enddo 

c pause 

      write(*,*) ' Call Equation Solver GMRES...' 

      call dgmres(3*n,u,ax,nelt,ia,ja,am,isym,matvec,msolve,itol,tol, !I CHANGE 

     &           itmax,iter,er,ierr,iunit,sb,sx,rgwk,lrgw,igwk,ligw, 

     &           rwork,iwork) 

      write(3,*) ' Error indicator from GMRES:',ierr 

      write(*,*) ' Error indicator from GMRES:',ierr 

 WRITE(*,*) '=======================================' 

 WRITE(3,*) '=======================================' 

c Output the boundary solution 
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      do i=1,n  

      u(3*ielem(i)-2) = ax(3*i-2) 

 u(3*ielem(i)-1) = ax(3*i-1) 

 u(3*ielem(i)) = ax(3*i) 

      enddo 

      write(3,*)'Fast Multipole BEM Solution:' 

c write(7,*)'Fast Multipole BEM Solution:' 

      WRITE(3,1) 

   1  FORMAT(' NO.',6X,'Rx',13X,'Ry',13X,'W',13X,'Mx',13X,'My',13X,'Q')       

 do i=1,n 

 

 IF(bc(1,3*I-2).EQ.1.AND.bc(1,3*I-1).EQ.1.AND. 

 &   bc(1,3*I).EQ.1) THEN 

            write(3,2)i,bc(2,3*i-2),bc(2,3*i-1), 

 &                bc(2,3*i),u(3*i-2),u(3*i-1),u(3*i) 

 ELSEIF(bc(1,3*I-2).EQ.1.AND.bc(1,3*I-1).EQ.1.AND. 

 &   bc(1,3*I).EQ.2) THEN 

            write(3,2)i,bc(2,3*i-2),bc(2,3*i-1), 

 &                u(3*i),u(3*i-2),u(3*i-1),bc(2,3*i) 

 ELSEIF(bc(1,3*I-2).EQ.1.AND.bc(1,3*I-1).EQ.2.AND. 

 &   bc(1,3*I).EQ.1) THEN 

            write(3,2)i,bc(2,3*i-2),u(3*i-1),bc(2,3*i) 

 &                ,u(3*i-2),bc(2,3*i-1),u(3*i) 

 ELSEIF(bc(1,3*I-2).EQ.1.AND.bc(1,3*I-1).EQ.2.AND. 

 &   bc(1,3*I).EQ.2) THEN 

            write(3,2)i,bc(2,3*i-2),u(3*i-1),u(3*i) 

 &                ,u(3*i-2),bc(2,3*i-1),bc(2,3*i) 

 ELSEIF(bc(1,3*I-2).EQ.2.AND.bc(1,3*I-1).EQ.1.AND. 

 &   bc(1,3*I).EQ.1) THEN 

            write(3,2)i,u(3*i-2),bc(2,3*i-1),bc(2,3*i) 

 &                ,bc(2,3*i-2),u(3*i-1),u(3*i) 

 ELSEIF(bc(1,3*I-2).EQ.2.AND.bc(1,3*I-1).EQ.1.AND. 

 &   bc(1,3*I).EQ.2) THEN 

            write(3,2)i,u(3*i-2),bc(2,3*i-1),u(3*i) 

 &                ,bc(2,3*i-2),u(3*i-1),bc(2,3*i) 

 ELSEIF(bc(1,3*I-2).EQ.2.AND.bc(1,3*I-1).EQ.2.AND. 

 &   bc(1,3*I).EQ.2) THEN 

            write(3,2)i,u(3*i-2),u(3*i-1),u(3*i),bc(2,3*i-2) 

 &                ,bc(2,3*i-1),bc(2,3*i) 

 ELSE 
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 WRITE(*,*) 'Error in writing output results' 

 STOP 

 ENDIF 

      enddo 

  2   FORMAT(I3,6E15.8) 

c Evaluate the field inside the domainand output the results 

C subroutine domain_field(nfield,xfield,UIP,SIP,n,x,y,bc,node,UR) 

      call domain_field(nfield,xfield,n,x,y,bc,node,u) !UIP,SIP, 

      return 

      end 

c =============================================== 

      subroutine prep_model(n,x,y,node,bc,dnorm,xfield,nfield,maxl, 

     &                     levmx,nexp,tolerance,maxt,  ! ,ntylr 

     &                     xmin,xmax,ymin,ymax) 

      implicit real*8(a-h,o-z) 

c INTEGER NODE 

      dimension x(2,*),Y(2,N),node(2,N),bc(2,*),dnorm(2,*) 

 + ,xfield(2,*) !I change 

 write(*,*) ' Reading input data...' 

      write(*,2) n,maxl,levmx,maxt,tolerance  !,nexp 

      write(3,2) n,maxl,levmx,maxt,tolerance  !,nexp 

    2 format('  Total number of elements           =',I12 

     &       /'  Max. number of elements in aleaf   =',I12 

     &       /'  Max. number of tree levels         =',I12 

     &       /'  Number of terms used in expansions =',I12 

     &       /'  Tolerance for convergence          =',D12.3) 

 

      write(3,*) "========================================" 

 DO I=1,N 

 DO J=1,2 

 X(J,I)=0.0 

 Y(J,I)=0.0 

 NODE(J,I)=0.0 

 DNORM(J,I)=0.0 

 ENDDO 

 ENDDO 

 DO I=1,3*N 

 DO J=1,2 

 BC(J,I)=0.D0 

 ENDDO 
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 ENDDO 

C==Input the mesh data 

c write(*,*) " reading input data..." 

      read(5,*)               

      do i=1,n 

      read(5,*)itemp,Y(1,i),Y(2,i) 

c WRITE(*,*) 'xxx',itemp,y(1,i),y(2,i) 

      enddo 

      read(5,*) 

 write(*,*) " Reading Boundary condions..." 

c write(*,*) ' No., of elements =',n 

      do i=1,n 

 read(5,*)itemp,node(1,i),node(2,i),bc(1,3*I-2),bc(2,3*I-2), 

 +         bc(1,3*I-1),bc(2,3*I-1),bc(1,3*I),bc(2,3*I) !I change 

C write(*,*) i,bc(1,3*I),bc(2,3*I) !Y(1,i),Y(2,i) 

      enddo      

C PAUSE 

C==Input the field points inside the domain 

      if (nfield.gt.0) then 

 write(*,*) ' co-ordinates of points inside domain....' 

      read(5,*) 

      do i=1,nfield 

      read(5,*)itemp,xfield(1,i),xfield(2,i)  

 write(*,*) itemp,xfield(1,i),xfield(2,i) 

      enddo 

      endif 

C==Compute mid-nodes and normals of the elements 

C write(*,*) "====mid-nodes and normals of the elements=====" 

C write(*,*) 'i,x(1,i),x(2,i),h1,h2,el,dnorm(1,i),dnorm(2,i)' 

c write(11,*) "====mid-nodes and normals of the elements=====" 

c write(11,*) 'i, ,x(1,i), ,x(2,i), ,el, ,dnorm(1,i), 

c & ,dnorm(2,i)' 

C  do i=1,n 

C  write(*,*) i,node(1,i),Y(1,I) !,'BVC',Y(1,node(1,i)) !,node(2,i) 

C enddo 

C pause 

 

 do i=1,n 

c  write(*,*) i,node(1,i),node(2,i),y(1,node(1,i)), 

c + y(2,node(1,i)),y(1,node(2,i)), 
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c + y(2,node(2,i)) 

c pause 

         x(1,i) = (Y(1,node(1,i)) + Y(1,node(2,i)))*0.5 

         x(2,i) = (Y(2,node(1,i)) + Y(2,node(2,i)))*0.5 

         h1 =   Y(2,node(2,i)) - Y(2,node(1,i)) 

         h2 = -Y(1,node(2,i)) + Y(1,node(1,i)) 

         el = sqrt(h1**2 + h2**2) 

c write(*,*) i,node(1,i+1),node(2,i+1) 

 

c pause 

C endif 

         dnorm(1,i) = h1/el 

         dnorm(2,i) = h2/el 

C write(*,*) i,x(1,i),x(2,i),h1,h2,el,dnorm(1,i),dnorm(2,i) 

c write(11,*) i,x(1,i),x(2,i),el,dnorm(1,i),dnorm(2,i)    

      enddo 

 

c  14 format(i5,2x,f10.4,2x,f10.4,2x,f10.4,2x,f10.4,2x,f10.4) 

 

c     Determine the square bounding the problem domain (Largest cell used in FMM) 

           xmin=x(1,1) 

           xmax=x(1,1) 

           ymin=x(2,1) 

           ymax=x(2,1) 

      do 10 i=2,n 

           if(x(1,i).le.xmin) then 

           xmin=x(1,i) 

           elseif(x(1,i).ge.xmax) then 

           xmax=x(1,i) 

           endif 

           if(x(2,i).le.ymin) then 

           ymin=x(2,i) 

           elseif(x(2,i).ge.ymax) then 

           ymax=x(2,i) 

           endif 

   10 continue 

c write(*,*) 'corner coordinates ofthe',  

c & 'square bounding the problem domain= (',xmin,',',ymin,')','&', 

c & '(',xmax,',',ymax,')' 

           scale = 1.05d0 !Make the squares lightly larger 
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           xyd   = max(xmax-xmin,ymax-ymin)/2.d0 

           xyd   = xyd*scale 

           cx    = (xmin+xmax)/2.d0 

           cy    = (ymin+ymax)/2.d0 

           xmin  = cx-xyd 

           xmax  = cx+xyd 

           ymin  = cy-xyd 

           ymax  = cy+xyd 

c write(*,*) 'corner coordinates ofthe',  

c  & 'square bounding the problem domain after scaled = (',xmin,',', 

c &  ymin,')','&','(',xmax,',',ymax,')' 

c pause 

c write(11,*) 'corner coordinates ofthe',  

c   & 'square bounding the problem domain after scaled = (',xmin,',', 

c &  ymin,')','&','(',xmax,',',ymax,')' 

c     Output nodal coordinates for plotting 

c      write(8,*) 'nodal coordinates for plotting' 

c        do i = 1,n 

c           write(8,*) x(1,i),x(2,i) 

c        enddo 

C PAUSE 

 write(*,*) 

 write(*,*) " Reading input file ==> Done" 

 write(*,*) 

      return 

      end 

C============================================================ 

c---------------------------------------------------------------------------- 

      subroutine fmmbvector(n,x,y,node,dnorm,bc,u,ax,a,b,xmax,xmin, 

     & ymax,ymin,ielem,itree,level,loct,numt,ifath, 

     & nexp,ntylr,ncellmx,lowlev,maxl,rwork,iwork,maxt) 

      implicit real*8(a-h,o-z) 

      real*8 a,b 

 integer flash 

c complex*16 a,b 

      dimension a(0:nexp,ncellmx),b(0:ntylr,ncellmx), 

     & x(2,*),y(2,*),node(2,*),dnorm(2,*),bc(2,*),u(*),ax(*),  !I change 

     & ielem(*),itree(*),level(0:*),loct(*),numt(*),ifath(*), 

     & rwork(*),iwork(*) 

c Switch the BC type 
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      do i=1,3*n  !I change      

      if(bc(1,i).eq.1.) then 

      bc(1,i) = 2.d0 

      else 

      bc(1,i) = 1.d0 

      endif 

      enddo 

 

      do i=1,n            !I change 

      u(3*i-2)  = bc(2,3*ielem(i)-2) 

 u(3*i-1)  = bc(2,3*ielem(i)-1) 

 u(3*i)  = bc(2,3*ielem(i)) 

c write(*,*) ielem(i),u(3*i-2),u(3*i-1),u(3*i) 

      ax(3*i-2) = 0.d0 

 ax(3*i-1) = 0.d0 

 ax(3*i) = 0.d0 

      enddo 

 flash=1 

c pause 

c Apply the FMM to compute the right-hand side vector b 

  

      call upward(u,n,y,node,dnorm,bc,a,xmax,xmin,ymax,ymin,ielem, 

     & itree,level,loct,numt,ifath,nexp,ncellmx,lowlev,maxl,maxt) !we here too 

 write(*,*) ' Please wait for calculations...'  

      call dwnwrd(u,ax,n,x,y,node,dnorm,bc,a,b,xmax,xmin,ymax,ymin, 

     & ielem,itree,level,loct,numt,ifath,nexp,ntylr,ncellmx, 

     & lowlev,maxl,rwork,iwork,flash,maxt) 

 write(*,*) ' Thanks for Waiting...' 

c Store b vector in u and switch the BC type back 

c write(15,*) '=======uuuuuu======' 

      do i=1,3*n 

c write(*,*) 'ax',i,ax(i) 

      u(i) =- ax(i) 

c write(15,*)i, u(i) 

      if(bc(1,i).eq.1.) then 

      bc(1,i) = 2.d0 

      else 

      bc(1,i) = 1.d0 

      endif 

      enddo 
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c write(15,*) '=======uuuuuu======' 

c pause 

      return 

      end 

c---------------------------------------------------------------------------- 

      subroutine upward(u,n,y,node,dnorm,bc,a,xmax,xmin,ymax,ymin,ielem, 

     & itree,level,loct,numt,ifath,nexp,ncellmx,lowlev,maxl,maxt) 

      implicit real*8(a-h,o-z) 

      real*8 a !,z0,zi,b 

      dimension a(0:nexp,ncellmx), 

     & y(2,*),node(2,*),dnorm(2,*),bc(2,*),u(*), 

     & ielem(*),itree(*),level(0:*),loct(*),numt(*),ifath(*) 

c      write(*,*)'kkkkk', level(lowlev+1)-1 

c pause 

 do i=1,level(lowlev+1)-1 

      do k=0,nexp 

      a(k,i) = (0.d0,0.d0)  !Clear multipole moments 

      enddo 

      enddo 

c write(*,*) maxt 

c pause 

c iiki=iiki+1 

c      write(*,*)iiki, '======U=====' 

c do i=1,n 

c write(*,*) I,u(3*i-2), u(3*i-1),u(3*i) 

c enddo 

c pause 

c write(*,*) '=======' 

      do 10 lev=lowlev,2,-1 !Loop from leaf to level 2 cells(Upward) 

      ndivx = 2**lev 

      dx = (xmax-xmin)/ndivx !Determine cell size 

      dy = (ymax-ymin)/ndivx 

      do 20 icell=level(lev),level(lev+1)-1 !Loop for level l cells 

         itr  = itree(icell) 

         itrx = mod(itr,ndivx) 

         itry = itr/ndivx                  !Position of the cell 

         cx   = xmin+(itrx + 0.5d0)*dx 

         cy   = ymin+(itry + 0.5d0)*dy     !Center of the cell 

c WRITE(*,*) ICELL,CX,CY, numt(icell) 

c PAUSE 
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c Multipole expansion 

      if(numt(icell).le.maxl.or.lev.eq.lowlev) then !Compute moment 

c WRITE(*,*) ICELL,CX,CY, numt(icell) 

c PAUSE 

      call moment(a(0,icell),y,node,ielem(loct(icell)), 

     &numt(icell),nexp,cx,cy,u(3*loct(icell)-2), 

     &bc,dnorm,maxt) 

      endif 

c do idi=0,nexp-1 

c write(*,*) idi, icell,a(idi,icell) 

c enddo 

c pause 

 

c M2M translation 

      if(lev.ne.2) then              !Do M2M translation to form moments 

c WRITE(*,*) 'M2M' 

        cxp = xmin+(int(itrx/2)*2 + 1)*dx 

        cyp = ymin+(int(itry/2)*2 + 1)*dy !Center of parent cell 

   r1= -cx+cxp   !(z_c - z_c') 

   r2= -cy+cyp 

        io  = ifath(icell)      !Cell no. of parent cell 

c if(icell.eq.20.or.icell.eq.39) then 

c write(*,*) r1,r2,icell,io 

c do k=0,30 !nexp 

c write(*,*)k,'dffd',a(k,io), a(k,icell) 

c enddo 

c pause 

c endif 

c write(*,*)icell,io !,cx,cy,cxp,cyp  !r1,r2,,a(62,io),a(62,icell) 

 

  

        do k=0,nexp-1,31          !Use M2M 

c write(*,*) k 

 a(k+0,io) = a(k+0,io) + a(k+0,icell)       !  c0 

 if(maxt.eq.1) goto 24 

c write(*,*) 'C0',a(k+0,io) 

 a(k+1,io) = a(k+1,io) + a(k+1,icell)- r1*a(k+0,icell)   !  c1 

c write(*,*) 'C1',a(k+1,io)  

      a(k+2,io) = a(k+2,io) + a(k+2,icell)- r2*a(k+0,icell)  !  c2 

 if(maxt.eq.2) goto 24 
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c write(*,*) 'C2',a(k+2,io)  

      a(k+3,io) = a(k+3,io) + a(k+3,icell)- r1*a(k+1,icell)  ! c11 

 & +r1**2/2*a(k+0,icell) 

c write(*,*) 'C11',a(k+3,io)  

      a(k+4,io) = a(k+4,io) + a(k+4,icell)- (r2*a(k+1,icell)+ 

 & r1*a(k+2,icell))/2+r1*r2/2*a(k+0,icell)             !  c12  

 write(*,*) 'C12',a(k+4,io)  

      a(k+5,io) =a(k+4,io) !a(k+5,io) + a(k+5,icell)- (r1*a(k+2,icell)+ 

c & r2*a(k+1,icell))/2+r1*r2/2*a(k+0,icell)             !  c21  

c write(*,*) 'C21',a(k+5,io)  

      a(k+6,io) = a(k+6,io) + a(k+6,icell)- r2*a(k+2,icell)  ! c22 

 & +r2**2/2*a(k+0,icell) 

 if(maxt.eq.3) goto 24 

c write(*,*) 'C22',a(k+6,io)  

      a(k+7,io) = a(k+7,io) + a(k+7,icell)- r1*a(k+3,icell)  !   c111 

 & +r1**2/2*a(k+1,icell)-r1**3/6*a(k+0,icell) 

 write(*,*) 'C111',a(k+7,io)  

      a(k+8,io) = a(k+8,io) + a(k+8,icell)+(- r2*a(k+3,icell)+ 

 & r1*r2/2*a(k+1,icell)- r1*a(k+4,icell)+r1*r2/2*a(k+1,icell)- 

     & r1*a(k+5,icell)+r1**2/2*a(k+2,icell))/3       

   

 & -r2*r1**2/6*a(k+0,icell)       ! c112 

c write(*,*) 'C112',a(k+8,io)  

      a(k+9,io) =a(k+8,io) !a(k+9,io) + a(k+9,icell)+(- r2*a(k+3,icell)+ 

c & r1*r2/2*a(k+1,icell)- r1*a(k+4,icell)+r1*r2/2*a(k+1,icell)- 

c     & r1*a(k+5,icell)+r1**2/2*a(k+2,icell))/3         

c & -r2*r1**2/6*a(k+0,icell)     ! c121 

c write(*,*) 'C121',a(k+9,io)  

      a(k+10,io) = a(k+10,io)+ a(k+10,icell)+(- r2*a(k+4,icell)+ 

 & r2**2/2*a(k+1,icell)- r2*a(k+5,icell)+r1*r2/2*a(k+2,icell)- 

     & r1*a(k+6,icell)+r1*r2/2*a(k+2,icell))/3         

 & -r1*r2**2/6*a(k+0,icell)     ! c122 

c write(*,*) 'C122',a(k+10,io)  

      a(k+11,io) = a(k+8,io)!a(k+11,io)+ a(k+11,icell)+(- r2*a(k+3,icell)+ 

c & r1*r2/2*a(k+1,icell)- r1*a(k+4,icell)+r1*r2/2*a(k+1,icell)- 

c     & r1*a(k+5,icell)+r1**2/2*a(k+2,icell))/3         

c & -r2*r1**2/6*a(k+0,icell)     ! c211 

c write(*,*) 'C211',a(k+11,io)  

      a(k+12,io) = a(k+10,io)!a(k+12,io)+ a(k+12,icell)+(- r2*a(k+4,icell)+ 

c & r2**2/2*a(k+1,icell)- r2*a(k+5,icell)+r1*r2/2*a(k+2,icell)- 
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c     & r1*a(k+6,icell)+r1*r2/2*a(k+2,icell))/3         

c & -r1*r2**2/6*a(k+0,icell)     ! c212 

c write(*,*) 'C212',a(k+12,io)  

      a(k+13,io) =a(k+10,io) !a(k+13,io) + a(k+13,icell)+(- r2*a(k+4,icell)+ 

c & r2**2/2*a(k+1,icell)- r2*a(k+5,icell)+r1*r2/2*a(k+2,icell)- 

c     & r1*a(k+6,icell)+r1*r2/2*a(k+2,icell))/3        

c & -r1*r2**2/6*a(k+0,icell)     ! c221 

c write(*,*) 'C221',a(k+13,io)  

      a(k+14,io) = a(k+14,io) + a(k+14,icell)- r2*a(k+6,icell) !c222 

 & +r2**2/2*a(k+2,icell)-r2**3/6*a(k+0,icell) 

 if(maxt.eq.4) goto 24 

c     write(*,*) 'C222',a(k+14,io)  

      a(k+15,io) = a(k+15,io) + a(k+15,icell)- r1*a(k+7,icell)  !c1111 

 & +r1**2/2*a(k+3,icell)-r1**3/6*a(k+1,icell)+ r1**4/24*a(k+0,icell) 

c write(*,*) 'C1111',a(k+15,io)  

      a(k+16,io) = a(k+16,io) + a(k+16,icell)+(- r2*a(k+7,icell)+ 

 & r1*r2/2*a(k+3,icell)-r2*r1**2/6*a(k+1,icell)- r1*a(k+8,icell)+ 

     & r1*r2/2*a(k+3,icell)-r2*r1**2/6*a(k+1,icell)- r1*a(k+9,icell)+ 

     & r1**2/2*a(k+4,icell)-r2*r1**2/6*a(k+1,icell)- r1*a(k+11,icell)+ 

     & r1**2/2*a(k+5,icell)-r1**3/6*a(k+2,icell))/4     

 & + r2*r1**3/24*a(k+0,icell)      ! c1112 

c write(*,*) 'C1112',a(k+16,io)  

      a(k+17,io) =a(k+16,io) !a(k+17,io) + a(k+17,icell)+(- r2*a(k+7,icell)+ 

c & r1*r2/2*a(k+3,icell)-r2*r1**2/6*a(k+1,icell)- r1*a(k+8,icell)+ 

c     & r1*r2/2*a(k+3,icell)-r2*r1**2/6*a(k+1,icell)- r1*a(k+9,icell)+ 

c     & r1**2/2*a(k+4,icell)-r2*r1**2/6*a(k+1,icell)- r1*a(k+11,icell)+ 

c     & r1**2/2*a(k+5,icell)-r1**3/6*a(k+2,icell))/4    

c & + r2*r1**3/24*a(k+0,icell)        ! c1121 

c write(*,*) 'C1121',a(k+17,io)  

      a(k+18,io) = a(k+18,io) + a(k+18,icell)+(- r2*a(k+8,icell)+ 

 & r2**2/2*a(k+3,icell)-r1*r2**2/6*a(k+1,icell)- r2*a(k+9,icell)+ 

     & r1*r2/2*a(k+4,icell)-r1*r2**2/6*a(k+1,icell)- r1*a(k+10,icell)+ 

     & r1*r2/2*a(k+4,icell)-r1*r2**2/6*a(k+1,icell)- r2*a(k+11,icell)+ 

     & r1*r2/2*a(k+5,icell)-r2*r1**2/6*a(k+2,icell)- r1*a(k+12,icell)+ 

     & r1*r2/2*a(k+5,icell)-r2*r1**2/6*a(k+2,icell)- r1*a(k+13,icell)+ 

     & r1**2/2*a(k+6,icell)-r2*r1**2/6*a(k+2,icell))/6      

 & + r1**2*r2**2/24*a(k+0,icell)     ! c1122 

c write(*,*) 'C1122',a(k+18,io)  

      a(k+19,io) =a(k+16,io) !a(k+19,io) + a(k+19,icell)+(- r2*a(k+7,icell)+ 

c & r1*r2/2*a(k+3,icell)-r2*r1**2/6*a(k+1,icell)- r1*a(k+8,icell)+ 
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c     & r1*r2/2*a(k+3,icell)-r2*r1**2/6*a(k+1,icell)- r1*a(k+9,icell)+ 

c     & r1**2/2*a(k+4,icell)-r2*r1**2/6*a(k+1,icell)- r1*a(k+11,icell)+ 

c     & r1**2/2*a(k+5,icell)-r1**3/6*a(k+2,icell))/4    

c & + r2*r1**3/24*a(k+0,icell)       ! c1211 

c write(*,*) 'C1211',a(k+19,io)  

      a(k+20,io) =a(k+18,io) !a(k+20,io) + a(k+20,icell)+(- r2*a(k+8,icell)+ 

c & r2**2/2*a(k+3,icell)-r1*r2**2/6*a(k+1,icell)- r2*a(k+9,icell)+ 

c     & r1*r2/2*a(k+4,icell)-r1*r2**2/6*a(k+1,icell)- r1*a(k+10,icell)+ 

c     & r1*r2/2*a(k+4,icell)-r1*r2**2/6*a(k+1,icell)- r2*a(k+11,icell)+ 

c     & r1*r2/2*a(k+5,icell)-r2*r1**2/6*a(k+2,icell)- r1*a(k+12,icell)+ 

c     & r1*r2/2*a(k+5,icell)-r2*r1**2/6*a(k+2,icell)- r1*a(k+13,icell)+ 

c     & r1**2/2*a(k+6,icell)-r2*r1**2/6*a(k+2,icell))/6      

c & + r1**2*r2**2/24*a(k+0,icell)      ! c1212 

c write(*,*) 'C1212',a(k+20,io)  

      a(k+21,io) =a(k+18,io) !a(k+21,io) + a(k+21,icell)+(- r2*a(k+8,icell)+ 

c & r2**2/2*a(k+3,icell)-r1*r2**2/6*a(k+1,icell)- r2*a(k+9,icell)+ 

c     & r1*r2/2*a(k+4,icell)-r1*r2**2/6*a(k+1,icell)- r1*a(k+10,icell)+ 

c     & r1*r2/2*a(k+4,icell)-r1*r2**2/6*a(k+1,icell)- r2*a(k+11,icell)+ 

c     & r1*r2/2*a(k+5,icell)-r2*r1**2/6*a(k+2,icell)- r1*a(k+12,icell)+ 

c     & r1*r2/2*a(k+5,icell)-r2*r1**2/6*a(k+2,icell)- r1*a(k+13,icell)+ 

c     & r1**2/2*a(k+6,icell)-r2*r1**2/6*a(k+2,icell))/6      

c & + r1**2*r2**2/24*a(k+0,icell)       ! c1221 

c write(*,*) 'C1221',a(k+21,io)  

      a(k+22,io) = a(k+22,io) + a(k+22,icell)+(- r2*a(k+10,icell)+ 

 & r2**2/2*a(k+4,icell)-r2**3/6*a(k+1,icell)- r2*a(k+12,icell)+ 

     & r2**2/2*a(k+5,icell)-r1*r2**2/6*a(k+2,icell)- r2*a(k+13,icell)+ 

     & r1*r2/2*a(k+6,icell)-r1*r2**2/6*a(k+2,icell)- r1*a(k+14,icell)+ 

     & r1*r2/2*a(k+6,icell)-r1*r2**2/6*a(k+2,icell))/4        

 & + r1*r2**3/24*a(k+0,icell)        !  c1222 

c write(*,*) 'C1222',a(k+22,io)  

      a(k+23,io) =a(k+16,io) !a(k+23,io) + a(k+23,icell)+(- r2*a(k+7,icell)+ 

c & r1*r2/2*a(k+3,icell)-r2*r1**2/6*a(k+1,icell)- r1*a(k+8,icell)+ 

c     & r1*r2/2*a(k+3,icell)-r2*r1**2/6*a(k+1,icell)- r1*a(k+9,icell)+ 

c     & r1**2/2*a(k+4,icell)-r2*r1**2/6*a(k+1,icell)- r1*a(k+11,icell)+ 

c     & r1**2/2*a(k+5,icell)-r1**3/6*a(k+2,icell))/4    

c & + r2*r1**3/24*a(k+0,icell)        ! c2111 

c write(*,*) 'C2111',a(k+23,io)  

      a(k+24,io) =a(k+18,io) !a(k+24,io) + a(k+24,icell)+(- r2*a(k+8,icell)+ 

c & r2**2/2*a(k+3,icell)-r1*r2**2/6*a(k+1,icell)- r2*a(k+9,icell)+ 

c     & r1*r2/2*a(k+4,icell)-r1*r2**2/6*a(k+1,icell)- r1*a(k+10,icell)+ 
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c     & r1*r2/2*a(k+4,icell)-r1*r2**2/6*a(k+1,icell)- r2*a(k+11,icell)+ 

c     & r1*r2/2*a(k+5,icell)-r2*r1**2/6*a(k+2,icell)- r1*a(k+12,icell)+ 

c     & r1*r2/2*a(k+5,icell)-r2*r1**2/6*a(k+2,icell)- r1*a(k+13,icell)+ 

c     & r1**2/2*a(k+6,icell)-r2*r1**2/6*a(k+2,icell))/6     

c & + r1**2*r2**2/24*a(k+0,icell)       ! c2112 

c write(*,*) 'C2112',a(k+24,io)  

      a(k+25,io) =a(k+18,io) !a(k+25,io) + a(k+25,icell)+(- r2*a(k+8,icell)+ 

c & r2**2/2*a(k+3,icell)-r1*r2**2/6*a(k+1,icell)- r2*a(k+9,icell)+ 

c     & r1*r2/2*a(k+4,icell)-r1*r2**2/6*a(k+1,icell)- r1*a(k+10,icell)+ 

c     & r1*r2/2*a(k+4,icell)-r1*r2**2/6*a(k+1,icell)- r2*a(k+11,icell)+ 

c     & r1*r2/2*a(k+5,icell)-r2*r1**2/6*a(k+2,icell)- r1*a(k+12,icell)+ 

c     & r1*r2/2*a(k+5,icell)-r2*r1**2/6*a(k+2,icell)- r1*a(k+13,icell)+ 

c     & r1**2/2*a(k+6,icell)-r2*r1**2/6*a(k+2,icell))/6    

c & + r1**2*r2**2/24*a(k+0,icell)       ! c2121 

c write(*,*) 'C2121',a(k+25,io)  

      a(k+26,io) =a(k+22,io) !a(k+26,io) + a(k+26,icell)+(- r2*a(k+10,icell)+ 

c & r2**2/2*a(k+4,icell)-r2**3/6*a(k+1,icell)- r2*a(k+12,icell)+ 

c     & r2**2/2*a(k+5,icell)-r1*r2**2/6*a(k+2,icell)- r2*a(k+13,icell)+ 

c     & r1*r2/2*a(k+6,icell)-r1*r2**2/6*a(k+2,icell)- r1*a(k+14,icell)+ 

c     & r1*r2/2*a(k+6,icell)-r1*r2**2/6*a(k+2,icell))/4         

c & + r1*r2**3/24*a(k+0,icell)       !  c2122 

c write(*,*) 'C2122',a(k+26,io)  

      a(k+27,io) =a(k+18,io) !a(k+27,io) + a(k+27,icell)+(- r2*a(k+8,icell)+ 

c & r2**2/2*a(k+3,icell)-r1*r2**2/6*a(k+1,icell)- r2*a(k+9,icell)+ 

c     & r1*r2/2*a(k+4,icell)-r1*r2**2/6*a(k+1,icell)- r1*a(k+10,icell)+ 

c     & r1*r2/2*a(k+4,icell)-r1*r2**2/6*a(k+1,icell)- r2*a(k+11,icell)+ 

c     & r1*r2/2*a(k+5,icell)-r2*r1**2/6*a(k+2,icell)- r1*a(k+12,icell)+ 

c     & r1*r2/2*a(k+5,icell)-r2*r1**2/6*a(k+2,icell)- r1*a(k+13,icell)+ 

c     & r1**2/2*a(k+6,icell)-r2*r1**2/6*a(k+2,icell))/6      

c & + r1**2*r2**2/24*a(k+0,icell)      ! c2211 

c write(*,*) 'C2211',a(k+27,io)  

      a(k+28,io) =a(k+22,io) !a(k+28,io) + a(k+28,icell)+(- r2*a(k+10,icell)+ 

c & r2**2/2*a(k+4,icell)-r2**3/6*a(k+1,icell)- r2*a(k+12,icell)+ 

c     & r2**2/2*a(k+5,icell)-r1*r2**2/6*a(k+2,icell)- r2*a(k+13,icell)+ 

c     & r1*r2/2*a(k+6,icell)-r1*r2**2/6*a(k+2,icell)- r1*a(k+14,icell)+ 

c     & r1*r2/2*a(k+6,icell)-r1*r2**2/6*a(k+2,icell))/4      

c & + r1*r2**3/24*a(k+0,icell)      !  c2212 

c write(*,*) 'C2212',a(k+28,io)  

      a(k+29,io) =a(k+22,io) !a(k+29,io) + a(k+29,icell)+(- r2*a(k+10,icell)+ 

c & r2**2/2*a(k+4,icell)-r2**3/6*a(k+1,icell)- r2*a(k+12,icell)+ 
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c     & r2**2/2*a(k+5,icell)-r1*r2**2/6*a(k+2,icell)- r2*a(k+13,icell)+ 

c     & r1*r2/2*a(k+6,icell)-r1*r2**2/6*a(k+2,icell)- r1*a(k+14,icell)+ 

c     & r1*r2/2*a(k+6,icell)-r1*r2**2/6*a(k+2,icell))/4       

c & + r1*r2**3/24*a(k+0,icell)      !  c2221 

c write(*,*) 'C2221',a(k+29,io)  

      a(k+30,io) = a(k+30,io) + a(k+30,icell)- r2*a(k+14,icell)+r2**2/2*     

 & a(k+6,icell) -r2**3/6*a(k+2,icell)+ r2**4/24*a(k+0,icell) !  c2222 

c write(*,*) 'C2222',a(k+30,io)  

c if(icell.eq.20.or.icell.eq.39) PAUSE 

   24 continue 

      enddo 

 endif 

c if(icell.eq.19) then 

c write(*,*) io,icell 

c do k=0,278 

c write(*,*) k,' ',a(k,io),'  ',a(k,icell) 

c enddo 

c write(*,*) r1,r2,icell,io,a(62,io),a(62,icell) 

c pause 

c endif 

       

   20 continue 

   10 continue 

 

c do i=1,level(lowlev+1)-1 

c      do k=0,nexp-1 

c write(*,*) a(k,i) 

c      write(11,7) a(k,i) 

c      enddo 

c   7  format(17(f30.26)) 

c      write(*,*) i,'========================' 

c      write(11,*) i,'========================' 

c   pause 

c      enddo 

c   write(11,*) '===end=====end=====end====' 

c write(*,*) '===end=====end=====end====' 

      return 

      end 

c---------------------------------------------------------------------------- 

*DECK DGMRES 
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      SUBROUTINE DGMRES (N, B, X, NELT, IA, JA, A, ISYM, MATVEC, MSOLVE, 

     +   ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT, SB, SX, RGWK, LRGW, 

     +   IGWK, LIGW, RWORK, IWORK) 

C***BEGIN PROLOGUE  DGMRES 

C***PURPOSE  Preconditioned GMRES iterative sparse Ax=b solver. 

C            This routine uses the generalized minimum residual 

C            (GMRES) method with preconditioning to solve 

C            non-symmetric linear systems of the form: Ax = b. 

C***LIBRARY   SLATEC (SLAP) 

C***CATEGORY  D2A4, D2B4 

C***TYPE      DOUBLE PRECISION (SGMRES-S, DGMRES-D) 

C***KEYWORDS  GENERALIZED MINIMUM RESIDUAL, ITERATIVE PRECONDITION, 

C             NON-SYMMETRIC LINEAR SYSTEM, SLAP, SPARSE 

C***AUTHOR  Brown, Peter, (LLNL), pnbrown@llnl.gov 

C           Hindmarsh, Alan, (LLNL), alanh@llnl.gov 

C           Seager, Mark K., (LLNL), seager@llnl.gov 

C             Lawrence Livermore National Laboratory 

C             PO Box 808, L-60 

C             Livermore, CA 94550 (510) 423-3141 

C***DESCRIPTION 

C 

C *Usage: 

C      INTEGER   N, NELT, IA(NELT), JA(NELT), ISYM, ITOL, ITMAX 

C      INTEGER   ITER, IERR, IUNIT, LRGW, IGWK(LIGW), LIGW 

C      INTEGER   IWORK(USER DEFINED) 

C      DOUBLE PRECISION B(N), X(N), A(NELT), TOL, ERR, SB(N), SX(N) 

C      DOUBLE PRECISION RGWK(LRGW), RWORK(USER DEFINED) 

C      EXTERNAL  MATVEC, MSOLVE 

C 

C      CALL DGMRES(N, B, X, NELT, IA, JA, A, ISYM, MATVEC, MSOLVE, 

C     $     ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT, SB, SX, 

C     $     RGWK, LRGW, IGWK, LIGW, RWORK, IWORK) 

C 

C *Arguments: 

C N      :IN       Integer. 

C         Order of the Matrix. 

C B      :IN       Double Precision B(N). 

C         Right-hand side vector. 

C X      :INOUT    Double Precision X(N). 

C         On input X is your initial guess for the solution vector. 
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C         On output X is the final approximate solution. 

C NELT   :IN       Integer. 

C         Number of Non-Zeros stored in A. 

C IA     :IN       Integer IA(NELT). 

C JA     :IN       Integer JA(NELT). 

C A      :IN       Double Precision A(NELT). 

C         These arrays contain the matrix data structure for A. 

C         It could take any form.  See "Description", below, 

C         for more details. 

C ISYM   :IN       Integer. 

C         Flag to indicate symmetric storage format. 

C         If ISYM=0, all non-zero entries of the matrix are stored. 

C         If ISYM=1, the matrix is symmetric, and only the upper 

C         or lower triangle of the matrix is stored. 

C MATVEC :EXT      External. 

C         Name of a routine which performs the matrix vector multiply 

C         Y = A*X given A and X.  The name of the MATVEC routine must 

C         be declared external in the calling program.  The calling 

C         sequence to MATVEC is: 

C             CALL MATVEC(N, X, Y, NELT, IA, JA, A, ISYM) 

C         where N is the number of unknowns, Y is the product A*X 

C         upon return, X is an input vector, and NELT is the number of 

C         non-zeros in the SLAP IA, JA, A storage for the matrix A. 

C         ISYM is a flag which, if non-zero, denotes that A is 

C         symmetric and only the lower or upper triangle is stored. 

C MSOLVE :EXT      External. 

C         Name of the routine which solves a linear system Mz = r for 

C         z given r with the preconditioning matrix M (M is supplied via 

C         RWORK and IWORK arrays.  The name of the MSOLVE routine must 

C         be declared external in the calling program.  The calling 

C         sequence to MSOLVE is: 

C             CALL MSOLVE(N, R, Z, NELT, IA, JA, A, ISYM, RWORK, IWORK) 

C         Where N is the number of unknowns, R is the right-hand side 

C         vector and Z is the solution upon return.  NELT, IA, JA, A and 

C         ISYM are defined as above.  RWORK is a double precision array 

C         that can be used to pass necessary preconditioning information 

C         and/or workspace to MSOLVE.  IWORK is an integer work array 

C         for the same purpose as RWORK. 

C ITOL   :IN       Integer. 

C         Flag to indicate the type of convergence criterion used. 
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C         ITOL=0  Means the  iteration stops when the test described 

C                 below on  the  residual RL  is satisfied.  This is 

C                 the  "Natural Stopping Criteria" for this routine. 

C                 Other values  of   ITOL  cause  extra,   otherwise 

C                 unnecessary, computation per iteration and     are 

C                 therefore  much less  efficient.  See  ISDGMR (the 

C                 stop test routine) for more information. 

C         ITOL=1  Means   the  iteration stops   when the first test 

C                 described below on  the residual RL  is satisfied, 

C                 and there  is either right  or  no preconditioning 

C                 being used. 

C         ITOL=2  Implies     that   the  user    is   using    left 

C                 preconditioning, and the second stopping criterion 

C                 below is used. 

C         ITOL=3  Means the  iteration stops   when  the  third test 

C                 described below on Minv*Residual is satisfied, and 

C                 there is either left  or no  preconditioning being 

C                 used. 

C         ITOL=11 is    often  useful  for   checking  and comparing 

C                 different routines.  For this case, the  user must 

C                 supply  the  "exact" solution or  a  very accurate 

C                 approximation (one with  an  error much less  than 

C                 TOL) through a common block, 

C                     COMMON /DSLBLK/ SOLN( ) 

C                 If ITOL=11, iteration stops when the 2-norm of the 

C                 difference between the iterative approximation and 

C                 the user-supplied solution  divided by the  2-norm 

C                 of the  user-supplied solution  is  less than TOL. 

C                 Note that this requires  the  user to  set up  the 

C                 "COMMON     /DSLBLK/ SOLN(LENGTH)"  in the calling 

C                 routine.  The routine with this declaration should 

C                 be loaded before the stop test so that the correct 

C                 length is used by  the loader.  This procedure  is 

C                 not standard Fortran and may not work correctly on 

C                 your   system (although  it  has  worked  on every 

C                 system the authors have tried).  If ITOL is not 11 

C                 then this common block is indeed standard Fortran. 

C TOL    :INOUT    Double Precision. 

C         Convergence criterion, as described below.  If TOL is set 

C         to zero on input, then a default value of 500*(the smallest 
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C         positive magnitude, machine epsilon) is used. 

C ITMAX  :DUMMY    Integer. 

C         Maximum number of iterations in most SLAP routines.  In 

C         this routine this does not make sense.  The maximum number 

C         of iterations here is given by ITMAX = MAXL*(NRMAX+1). 

C         See IGWK for definitions of MAXL and NRMAX. 

C ITER   :OUT      Integer. 

C         Number of iterations required to reach convergence, or 

C         ITMAX if convergence criterion could not be achieved in 

C         ITMAX iterations. 

C ERR    :OUT      Double Precision. 

C         Error estimate of error in final approximate solution, as 

C         defined by ITOL.  Letting norm() denote the Euclidean 

C         norm, ERR is defined as follows.. 

C 

C         If ITOL=0, then ERR = norm(SB*(B-A*X(L)))/norm(SB*B), 

C                               for right or no preconditioning, and 

C                         ERR = norm(SB*(M-inverse)*(B-A*X(L)))/ 

C                                norm(SB*(M-inverse)*B), 

C                               for left preconditioning. 

C         If ITOL=1, then ERR = norm(SB*(B-A*X(L)))/norm(SB*B), 

C                               since right or no preconditioning 

C                               being used. 

C         If ITOL=2, then ERR = norm(SB*(M-inverse)*(B-A*X(L)))/ 

C                                norm(SB*(M-inverse)*B), 

C                               since left preconditioning is being 

C                               used. 

C         If ITOL=3, then ERR =  Max  |(Minv*(B-A*X(L)))(i)/x(i)| 

C                               i=1,n 

C         If ITOL=11, then ERR = norm(SB*(X(L)-SOLN))/norm(SB*SOLN). 

C IERR   :OUT      Integer. 

C         Return error flag. 

C               IERR = 0 => All went well. 

C               IERR = 1 => Insufficient storage allocated for 

C                           RGWK or IGWK. 

C               IERR = 2 => Routine DGMRES failed to reduce the norm 

C                           of the current residual on its last call, 

C                           and so the iteration has stalled.  In 

C                           this case, X equals the last computed 

C                           approximation.  The user must either 
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C                           increase MAXL, or choose a different 

C                           initial guess. 

C               IERR =-1 => Insufficient length for RGWK array. 

C                           IGWK(6) contains the required minimum 

C                           length of the RGWK array. 

C               IERR =-2 => Illegal value of ITOL, or ITOL and JPRE 

C                           values are inconsistent. 

C         For IERR <= 2, RGWK(1) = RHOL, which is the norm on the 

C         left-hand-side of the relevant stopping test defined 

C         below associated with the residual for the current 

C         approximation X(L). 

C IUNIT  :IN       Integer. 

C         Unit number on which to write the error at each iteration, 

C         if this is desired for monitoring convergence.  If unit 

C         number is 0, no writing will occur. 

C SB     :IN       Double Precision SB(N). 

C         Array of length N containing scale factors for the right 

C         hand side vector B.  If JSCAL.eq.0 (see below), SB need 

C         not be supplied. 

C SX     :IN       Double Precision SX(N). 

C         Array of length N containing scale factors for the solution 

C         vector X.  If JSCAL.eq.0 (see below), SX need not be 

C         supplied.  SB and SX can be the same array in the calling 

C         program if desired. 

C RGWK   :INOUT    Double Precision RGWK(LRGW). 

C         Double Precision array used for workspace by DGMRES. 

C         On return, RGWK(1) = RHOL.  See IERR for definition of RHOL. 

C LRGW   :IN       Integer. 

C         Length of the double precision workspace, RGWK. 

C         LRGW >= 1 + N*(MAXL+6) + MAXL*(MAXL+3). 

C         See below for definition of MAXL. 

C         For the default values, RGWK has size at least 131 + 16*N. 

C IGWK   :INOUT    Integer IGWK(LIGW). 

C         The following IGWK parameters should be set by the user 

C         before calling this routine. 

C         IGWK(1) = MAXL.  Maximum dimension of Krylov subspace in 

C            which X - X0 is to be found (where, X0 is the initial 

C            guess).  The default value of MAXL is 10. 

C         IGWK(2) = KMP.  Maximum number of previous Krylov basis 

C            vectors to which each new basis vector is made orthogonal. 
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C            The default value of KMP is MAXL. 

C         IGWK(3) = JSCAL.  Flag indicating whether the scaling 

C            arrays SB and SX are to be used. 

C            JSCAL = 0 => SB and SX are not used and the algorithm 

C               will perform as if all SB(I) = 1 and SX(I) = 1. 

C            JSCAL = 1 =>  Only SX is used, and the algorithm 

C               performs as if all SB(I) = 1. 

C            JSCAL = 2 =>  Only SB is used, and the algorithm 

C               performs as if all SX(I) = 1. 

C            JSCAL = 3 =>  Both SB and SX are used. 

C         IGWK(4) = JPRE.  Flag indicating whether preconditioning 

C            is being used. 

C            JPRE = 0  =>  There is no preconditioning. 

C            JPRE > 0  =>  There is preconditioning on the right 

C               only, and the solver will call routine MSOLVE. 

C            JPRE < 0  =>  There is preconditioning on the left 

C               only, and the solver will call routine MSOLVE. 

C         IGWK(5) = NRMAX.  Maximum number of restarts of the 

C            Krylov iteration.  The default value of NRMAX = 10. 

C            if IWORK(5) = -1,  then no restarts are performed (in 

C            this case, NRMAX is set to zero internally). 

C         The following IWORK parameters are diagnostic information 

C         made available to the user after this routine completes. 

C         IGWK(6) = MLWK.  Required minimum length of RGWK array. 

C         IGWK(7) = NMS.  The total number of calls to MSOLVE. 

C LIGW   :IN       Integer. 

C         Length of the integer workspace, IGWK.  LIGW >= 20. 

C RWORK  :WORK     Double Precision RWORK(USER DEFINED). 

C         Double Precision array that can be used for workspace in 

C         MSOLVE. 

C IWORK  :WORK     Integer IWORK(USER DEFINED). 

C         Integer array that can be used for workspace in MSOLVE. 

C 

C *Description: 

C       DGMRES solves a linear system A*X = B rewritten in the form: 

C 

C        (SB*A*(M-inverse)*(SX-inverse))*(SX*M*X) = SB*B, 

C 

C       with right preconditioning, or 

C 
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C        (SB*(M-inverse)*A*(SX-inverse))*(SX*X) = SB*(M-inverse)*B, 

C 

C       with left preconditioning, where A is an N-by-N double precision 

C       matrix, X and B are N-vectors,  SB and SX  are diagonal scaling 

C       matrices,   and M is  a preconditioning    matrix.   It uses 

C       preconditioned  Krylov   subpace  methods  based     on  the 

C       generalized minimum residual  method (GMRES).   This routine 

C       optionally performs  either  the  full     orthogonalization 

C       version of the  GMRES  algorithm or an incomplete variant of 

C       it.  Both versions use restarting of the linear iteration by 

C       default, although the user can disable this feature. 

C 

C       The GMRES  algorithm generates a sequence  of approximations 

C       X(L) to the  true solution of the above  linear system.  The 

C       convergence criteria for stopping the  iteration is based on 

C       the size  of the  scaled norm of  the residual  R(L)  =  B - 

C       A*X(L).  The actual stopping test is either: 

C 

C               norm(SB*(B-A*X(L))) .le. TOL*norm(SB*B), 

C 

C       for right preconditioning, or 

C 

C               norm(SB*(M-inverse)*(B-A*X(L))) .le. 

C                       TOL*norm(SB*(M-inverse)*B), 

C 

C       for left preconditioning, where norm() denotes the Euclidean 

C       norm, and TOL is  a positive scalar less  than one  input by 

C       the user.  If TOL equals zero  when DGMRES is called, then a 

C       default  value  of 500*(the   smallest  positive  magnitude, 

C       machine epsilon) is used.  If the  scaling arrays SB  and SX 

C       are used, then  ideally they  should be chosen  so  that the 

C       vectors SX*X(or SX*M*X) and  SB*B have all their  components 

C       approximately equal  to  one in  magnitude.  If one wants to 

C       use the same scaling in X  and B, then  SB and SX can be the 

C       same array in the calling program. 

C 

C       The following is a list of the other routines and their 

C       functions used by DGMRES: 

C       DPIGMR  Contains the main iteration loop for GMRES. 

C       DORTH   Orthogonalizes a new vector against older basis vectors. 
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C       DHEQR   Computes a QR decomposition of a Hessenberg matrix. 

C       DHELS   Solves a Hessenberg least-squares system, using QR 

C               factors. 

C       DRLCAL  Computes the scaled residual RL. 

C       DXLCAL  Computes the solution XL. 

C       ISDGMR  User-replaceable stopping routine. 

C 

C       This routine does  not care  what matrix data   structure is 

C       used for  A and M.  It simply   calls  the MATVEC and MSOLVE 

C       routines, with  the arguments as  described above.  The user 

C       could write any type of structure and the appropriate MATVEC 

C       and MSOLVE routines.  It is assumed  that A is stored in the 

C       IA, JA, A  arrays in some fashion and  that M (or INV(M)) is 

C       stored  in  IWORK  and  RWORK   in  some fashion.   The SLAP 

C       routines DSDCG and DSICCG are examples of this procedure. 

C 

C       Two  examples  of  matrix  data structures  are the: 1) SLAP 

C       Triad  format and 2) SLAP Column format. 

C 

C       =================== S L A P Triad format =================== 

C       This routine requires that the  matrix A be   stored in  the 

C       SLAP  Triad format.  In  this format only the non-zeros  are 

C       stored.  They may appear in  *ANY* order.  The user supplies 

C       three arrays of  length NELT, where  NELT is  the number  of 

C       non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)).  For 

C       each non-zero the user puts the row and column index of that 

C       matrix element  in the IA and  JA arrays.  The  value of the 

C       non-zero   matrix  element is  placed  in  the corresponding 

C       location of the A array.   This is  an  extremely  easy data 

C       structure to generate.  On  the  other hand it   is  not too 

C       efficient on vector computers for  the iterative solution of 

C       linear systems.  Hence,   SLAP changes   this  input    data 

C       structure to the SLAP Column format  for  the iteration (but 

C       does not change it back). 

C 

C       Here is an example of the  SLAP Triad   storage format for a 

C       5x5 Matrix.  Recall that the entries may appear in any order. 

C 

C           5x5 Matrix      SLAP Triad format for 5x5 matrix on left. 

C                              1  2  3  4  5  6  7  8  9 10 11 
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C       |11 12  0  0 15|   A: 51 12 11 33 15 53 55 22 35 44 21 

C       |21 22  0  0  0|  IA:  5  1  1  3  1  5  5  2  3  4  2 

C       | 0  0 33  0 35|  JA:  1  2  1  3  5  3  5  2  5  4  1 

C       | 0  0  0 44  0| 

C       |51  0 53  0 55| 

C 

C       =================== S L A P Column format ================== 

C 

C       This routine requires that the matrix A  be stored in  the 

C       SLAP Column format.  In this format the non-zeros are stored 

C       counting down columns (except for  the diagonal entry, which 

C       must appear first in each  "column")  and are stored  in the 

C       double precision array A.   In other words,  for each column 

C       in the matrix put the diagonal entry in  A.  Then put in the 

C       other non-zero  elements going down  the column (except  the 

C       diagonal) in order.   The  IA array holds the  row index for 

C       each non-zero.  The JA array holds the offsets  into the IA, 

C       A arrays  for  the  beginning  of each   column.   That  is, 

C       IA(JA(ICOL)),  A(JA(ICOL)) points   to the beginning  of the 

C       ICOL-th   column    in    IA and   A.      IA(JA(ICOL+1)-1), 

C       A(JA(ICOL+1)-1) points to  the  end of the   ICOL-th column. 

C       Note that we always have  JA(N+1) = NELT+1,  where N is  the 

C       number of columns in  the matrix and NELT  is the number  of 

C       non-zeros in the matrix. 

C 

C       Here is an example of the  SLAP Column  storage format for a 

C       5x5 Matrix (in the A and IA arrays '|'  denotes the end of a 

C       column): 

C 

C           5x5 Matrix      SLAP Column format for 5x5 matrix on left. 

C                              1  2  3    4  5    6  7    8    9 10 11 

C       |11 12  0  0 15|   A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35 

C       |21 22  0  0  0|   IA: 1  2  5 |  2  1 |  3  5 |  4 |  5  1  3 

C       | 0  0 33  0 35|  JA:  1  4  6    8  9   12 

C       | 0  0  0 44  0| 

C       |51  0 53  0 55| 

C 

C *Cautions: 

C     This routine will attempt to write to the Fortran logical output 

C     unit IUNIT, if IUNIT .ne. 0.  Thus, the user must make sure that 



 

95 
 

C     this logical unit is attached to a file or terminal before calling 

C     this routine with a non-zero value for IUNIT.  This routine does 

C     not check for the validity of a non-zero IUNIT unit number. 

C 

C***REFERENCES  1. Peter N. Brown and A. C. Hindmarsh, Reduced Storage 

C                  Matrix Methods in Stiff ODE Systems, Lawrence Liver- 

C                  more National Laboratory Report UCRL-95088, Rev. 1, 

C                  Livermore, California, June 1987. 

C               2. Mark K. Seager, A SLAP for the Masses, in 

C                  G. F. Carey, Ed., Parallel Supercomputing: Methods, 

C                  Algorithms and Applications, Wiley, 1989, pp.135-155. 

C***ROUTINES CALLED  D1MACH, DCOPY, DNRM2, DPIGMR 

C***REVISION HISTORY  (YYMMDD) 

C   890404  DATE WRITTEN 

C   890404  Previous REVISION DATE 

C   890915  Made changes requested at July 1989 CML Meeting.  (MKS) 

C   890922  Numerous changes to prologue to make closer to SLATEC 

C           standard.  (FNF) 

C   890929  Numerous changes to reduce SP/DP differences.  (FNF) 

C   891004  Added new reference. 

C   910411  Prologue converted to Version 4.0 format.  (BAB) 

C   910506  Corrected errors in C***ROUTINES CALLED list.  (FNF) 

C   920407  COMMON BLOCK renamed DSLBLK.  (WRB) 

C   920511  Added complete declaration section.  (WRB) 

C   920929  Corrected format of references.  (FNF) 

C   921019  Changed 500.0 to 500 to reduce SP/DP differences.  (FNF) 

C   921026  Added check for valid value of ITOL.  (FNF) 

C***END PROLOGUE  DGMRES 

C         The following is for optimized compilation on LLNL/LTSS Crays. 

CLLL. OPTIMIZE 

C     .. Scalar Arguments .. 

      DOUBLE PRECISION ERR, TOL 

      INTEGER IERR, ISYM, ITER, ITMAX, ITOL, IUNIT, LIGW, LRGW, N, NELT 

C     .. Array Arguments .. 

      DOUBLE PRECISION A(NELT), B(N), RGWK(LRGW), RWORK(*), SB(N), 

     +                 SX(N), X(N) 

 

      INTEGER IA(NELT), IGWK(LIGW), IWORK(*), JA(NELT) 

C     .. Subroutine Arguments .. 

      EXTERNAL MATVEC, MSOLVE 
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C     .. Local Scalars .. 

      DOUBLE PRECISION BNRM, RHOL, SUM 

      INTEGER I, IFLAG, JPRE, JSCAL, KMP, LDL, LGMR, LHES, LQ, LR, LV, 

     +        LW, LXL, LZ, LZM1, MAXL, MAXLP1, NMS, NMSL, NRMAX, NRSTS 

C     .. External Functions .. 

      DOUBLE PRECISION D1MACH, DNRM2 

      EXTERNAL D1MACH, DNRM2 

C     .. External Subroutines .. 

      EXTERNAL DCOPY, DPIGMR 

C     .. Intrinsic Functions .. 

      INTRINSIC SQRT 

C***FIRST EXECUTABLE STATEMENT  DGMRES 

      IERR = 0 

c do i=1,36 

c write(*,*) i,rwork(i) 

c enddo  

c pause 

c write(*,*)  n,nelt 

c pause 

C   ------------------------------------------------------------------ 

C         Load method parameters with user values or defaults. 

C   ------------------------------------------------------------------ 

 

      MAXL = IGWK(1) 

      IF (MAXL .EQ. 0) MAXL = 10 

      IF (MAXL .GT. N) MAXL = N 

      KMP = IGWK(2) 

      IF (KMP .EQ. 0) KMP = MAXL 

      IF (KMP .GT. MAXL) KMP = MAXL 

      JSCAL = IGWK(3) 

      JPRE = IGWK(4) 

C         Check for valid value of ITOL. 

      IF( (ITOL.LT.0) .OR. ((ITOL.GT.3).AND.(ITOL.NE.11)) ) GOTO 650 

C         Check for consistent values of ITOL and JPRE. 

      IF( ITOL.EQ.1 .AND. JPRE.LT.0 ) GOTO 650 

      IF( ITOL.EQ.2 .AND. JPRE.GE.0 ) GOTO 650 

      NRMAX = IGWK(5) 

      IF( NRMAX.EQ.0 ) NRMAX = 10 

C         If NRMAX .eq. -1, then set NRMAX = 0 to turn off restarting. 

      IF( NRMAX.EQ.-1 ) NRMAX = 0 
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C         If input value of TOL is zero, set it to its default value. 

      IF( TOL.EQ.0.0D0 ) TOL = 500*D1MACH(3) 

C 

C         Initialize counters. 

      ITER = 0 

      NMS = 0 

      NRSTS = 0 

c  n=3*n     ! I CHANGE 

C   ------------------------------------------------------------------ 

C         Form work array segment pointers. 

C   ------------------------------------------------------------------ 

      MAXLP1 = MAXL + 1 

      LV = 1 

      LR = LV + N*MAXLP1 

      LHES = LR + N + 1 

      LQ = LHES + MAXL*MAXLP1 

      LDL = LQ + 2*MAXL 

      LW = LDL + N 

      LXL = LW + N 

      LZ = LXL + N 

C WRITE(*,*) LR,LHES,LDL,LW,LXL,LZ,LRGW 

C      PAUSE 

C         Load IGWK(6) with required minimum length of the RGWK array. 

      IGWK(6) = LZ +N - 1 

      IF( LZ+N-1.GT.LRGW ) GOTO 640 

C   ------------------------------------------------------------------ 

C         Calculate scaled-preconditioned norm of RHS vector b. 

C   ------------------------------------------------------------------ 

C write(*,*) JPRE 

C pause 

C write(*,*) 'N',N 

C pause 

 

      IF (JPRE .LT. 0) THEN 

C   PAUSE 

         CALL MSOLVE(N, B, RGWK(LR), NELT, IA, JA, A, ISYM, 

     $        RWORK, IWORK) 

         NMS = NMS + 1 

      ELSE 

C DO KK=1,N 
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C WRITE(*,*)'B', B(KK) 

C ENDDO  

C PAUSE 

         CALL DCOPY(N, B, 1, RGWK(LR), 1) 

C DO KK=LR,N+LR-1 

C WRITE(*,*) KK,'RGWK',RGWK(KK) 

C ENDDO  

C PAUSE 

C DO I=1,igwk(6) 

C if(rgwk(I).NE.0)THEN     

C WRITE(*,*) I,RGWK(I) 

C ENDIF 

C ENDDO 

C PAUSE 

      ENDIF 

C write(*,*) 'NN',N 

c  pause 

 

C write(*,*) JSCAL 

C pause 

      IF( JSCAL.EQ.2 .OR. JSCAL.EQ.3 ) THEN 

         SUM = 0 

         DO 10 I = 1,N 

            SUM = SUM + (RGWK(LR-1+I)*SB(I))**2 

 10      CONTINUE 

         BNRM = SQRT(SUM) 

      ELSE 

         BNRM = DNRM2(N,RGWK(LR),1) 

C    IF(BNRM.EQ.0) THEN  ! I CREATE 

C      BNRM=1     ! I CREATE 

C    ENDIF     ! I CREATE 

C write(*,*) BNRM 

c pause 

 

      ENDIF 

C write(*,*) 'NNN',N 

C  pause 

 

C      ======  RWORK ARRAY IS CHANGED HERE @ MATVEC  ====== 

C   ------------------------------------------------------------------ 
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C         Calculate initial residual. 

C   ------------------------------------------------------------------ 

      CALL MATVEC(N, X, RGWK(LR), NELT, IA, JA, A, ISYM) 

c   do I=1,324 

c   WRITE(*,*) i,'rwork',rwork(i)  !B(I) 

c   ENDDO 

C   WRITE(*,*) '==========================' 

C   do I=1,N 

C   WRITE(*,*) RGWK(LR-1+I)    

C   ENDDO 

C   WRITE(*,*) '==========================' 

c pause 

      DO 50 I = 1,N 

         RGWK(LR-1+I) = B(I) - RGWK(LR-1+I) 

  50   CONTINUE 

C      do I=1,N 

C   WRITE(*,*) "MM",I,RGWK(LR-1+I) 

C   ENDDO 

C   PAUSE 

C write(*,*) 'NNNN',N 

C  pause 

 

C   ------------------------------------------------------------------ 

C         If performing restarting, then load the residual into the 

C         correct location in the RGWK array. 

C   ------------------------------------------------------------------ 

 100  CONTINUE 

C       WRITE(*,*) NRSTS,NRMAX 

C    PAUSE 

      IF( NRSTS.GT.NRMAX ) GOTO 610 

      IF( NRSTS.GT.0 ) THEN 

C         Copy the current residual to a different location in the RGWK 

C         array. 

         CALL DCOPY(N, RGWK(LDL), 1, RGWK(LR), 1) 

      ENDIF 

C DO I=1,N 

C WRITE(*,*)  RGWK(LR-1+I) 

C ENDDO 

C WRITE(*,*) 'NNNNN',N 
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c   do I=1,324 

c   WRITE(*,*) i,'rwork',rwork(i)  

c   ENDDO 

c PAUSE 

C   --------------------------IMPORTANT------------------------------- 

C         Use the DPIGMR algorithm to solve the linear system A*Z = R. 

C   ------------------------------------------------------------------   MATAHA 

      CALL DPIGMR(N, RGWK(LR), SB, SX, JSCAL, MAXL, MAXLP1, KMP, 

     $       NRSTS, JPRE, MATVEC, MSOLVE, NMSL, RGWK(LZ), RGWK(LV), 

     $       RGWK(LHES), RGWK(LQ), LGMR, RWORK, IWORK, RGWK(LW), 

     $       RGWK(LDL), RHOL, NRMAX, B, BNRM, X, RGWK(LXL), ITOL, 

     $       TOL, NELT, IA, JA, A, ISYM, IUNIT, IFLAG, ERR) 

      ITER = ITER + LGMR 

      NMS = NMS + NMSL 

c   PAUSE 

C  DO I=1,N 

C  WRITE(*,*)  I,RGWK(LZ-1+I) 

C  ENDDO 

C  PAUSE 

C 

C         Increment X by the current approximate solution Z of A*Z = R. 

C 

      LZM1 = LZ - 1 

      DO 110 I = 1,N 

         X(I) = X(I) + RGWK(LZM1+I) 

 110  CONTINUE 

C      WRITE(*,*) IFLAG 

c PAUSE 

      IF( IFLAG.EQ.0 ) GOTO 600 

      IF( IFLAG.EQ.1 ) THEN 

         NRSTS = NRSTS + 1 

         GOTO 100 

      ENDIF 

      IF( IFLAG.EQ.2 ) GOTO 620 

C   ------------------------------------------------------------------ 

C         All returns are made through this section. 

C   ------------------------------------------------------------------ 

C         The iteration has converged. 

C 

 600  CONTINUE 
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      IGWK(7) = NMS 

      RGWK(1) = RHOL 

      IERR = 0 

      RETURN 

C 

C         Max number((NRMAX+1)*MAXL) of linear iterations performed. 

 610  CONTINUE 

      IGWK(7) = NMS 

      RGWK(1) = RHOL 

      IERR = 1 

      RETURN 

C 

C         GMRES failed to reduce last residual in MAXL iterations. 

C         The iteration has stalled. 

 620  CONTINUE 

      IGWK(7) = NMS 

      RGWK(1) = RHOL 

      IERR = 2 

      RETURN 

C         Error return.  Insufficient length for RGWK array. 

 640  CONTINUE 

      ERR = TOL 

      IERR = -1 

      RETURN 

C         Error return.  Inconsistent ITOL and JPRE values. 

 650  CONTINUE 

      ERR = TOL 

      IERR = -2 

      RETURN 

C------------- LAST LINE OF DGMRES FOLLOWS ---------------------------- 

      END 

c====================================================== 

 

 

 

 

 

 

 



 

102 
 

APPENDIX   A.1 

Sample of first input file 

A Square Plate Bending                    

.3    0   30000000    8    50    1    0    0       !THICKNESS    V      E     NSUB   No. of Elements,  No. of Field Points 

# Nodes (Node No., x-coordinate, y-coordinate): 

1 0 0 

2 1 0 

3 2 0 

4 3 0 

5 4 0 

6 5 0 

7 6 0 

8 7 0 

9 8 0 

10 9 0 

11 10 0 

12 11 0 

13 12 0 

14 13 0 

15 14 0 

16 15 0 

17 16 0 

18 17 0 

19 18 0 

20 19 0 

21 20 0 

22 20 1 

23 20 2 

24 20 3 

25 20 4 

26 20 5 

27 19 5 

28 18 5 

29 17 5 

30 16 5 

31 15 5 

32 14 5 

33 13 5 

34 12 5 



 

103 
 

35 11 5 

36 10 5 

37 9 5 

38 8 5 

39 7 5 

40 6 5 

41 5 5 

42 4 5 

43 3 5 

44 2 5 

45 1 5 

46 0 5 

47 0 4 

48 0 3 

49 0 2 

50 0 1 

# Elements and Boundary Conditions (Element No., Local Node 1, Local Node 2, BC Type, BC Value): 

1 1 2  2 0  2 0  2 0 

2 2 3  2 0  2 0  2       0 

3 3 4  2 0  2 0  2 0 

4 4 5  2 0  2 0  2 0 

5 5 6  2 0  2 0  2 0 

6 6 7  2 0  2 0  2 0 

7 7 8  2 0  2 0  2 0 

8 8 9  2 0  2 0  2 0 

9 9 10  2 0  2 0  2 0 

10 10 11  2 0  2 0  2 0 

11 11 12  2 0  2 0  2 0 

12 12 13  2 0  2 0  2 0 

13 13 14  2 0  2 0  2 0 

14 14 15  2 0  2 0  2 0 

15 15 16  2 0  2 0  2 0 

16 16 17  2 0  2 0  2 0 

17 17 18  2 0  2 0  2 0 

18 18 19  2 0  2 0  2 0 

19 19 20  2 0  2 0  2 0 

20 20 21  2 0  2 0  2 0 

21 21 22  2 0  2 0  2 -1.5 

22 22 23  2 0  2 0  2 -1.5 

23 23 24  2 0  2 0  2 -1.5 
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24 24 25  2 0  2 0  2 -1.5 

25 25 26  2 0  2 0  2 -1.5 

26 26 27  2 0  2 0  2 0 

27 27 28  2 0  2 0  2 0 

28 28 29  2 0  2 0  2 0 

29 29 30  2 0  2 0  2 0 

30 30 31  2 0  2 0  2 0 

31 31 32  2 0  2 0  2 0 

32 32 33  2 0  2 0  2 0 

33 33 34  2 0  2 0  2 0 

34 34 35  2 0  2 0  2 0 

35 35 36  2 0  2 0  2 0 

36 36 37  2 0  2 0  2 0 

37 37 38  2 0  2 0  2 0 

38 38 39  2 0  2 0  2 0 

39 39 40  2 0  2 0  2 0 

40 40 41  2 0  2 0  2 0 

41 41 42  2 0  2 0  2 0 

42 42 43  2 0  2 0  2 0 

43 43 44  2 0  2 0  2 0 

44 44 45  2 0  2 0  2 0 

45 45 46  2 0  2 0  2 0 

46 46 47  1 0  1 0  1 0 

47 47 48  1 0  1 0  1 0 

48 48 49  1 0  1 0  1 0 

49 49 50  1 0  1 0  1 0 

50 50 1  1 0  1 0  1 0 

# Field Points Inside Domain (Field Point No., x-coordinate, y-coordinate): 

1     10      2.5 

# End of File 
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APPENDIX   A.2 

Sample of second input file 

    500    10    279     279     1.0E-7  ! maxl  levmx   nexp    ntylr  tolerance 

    50  50000  50000    50   90000000  ! maxia ncellmx nleafmx mxl    nwksz 

    3                                  ! maxt 

 

Definitions of the above parameters: 

maxt:       maximum terms in use from expansion (T =< 5) 

maxl:       maximum number of elements in a leaf 

levmx:      maximum number of tree levels 

nexp:       order of the fastmultipole expansions (p) 

ntylr:      order of the local expansions (= p, in general) 

tolerance:  tolerance for convergence used in the iterative solver 

maxia:      maximum number of parameters 

ncellmx:    maximum number of cells allowed in the tree 

nleafmx:    maximum number of leaves allowed in the tree 

mxl:        maximum dimension of Krylov subspace used in the iterative solver 

nwksz:      size of the space used to store coefficients in preconditioner 

            (use default in the code,if value = 0) 

c---------------------------------------------------------- 


