
A fast multi-pole expansion applied to bending of
plates integral equations

A Thesis
Submitted to the

Faculty of Engineering Shoubra, Benha University
In Partial Fulfillment of the Requirements for the

Degree of Master of Science
in

Engineering Mathematics

by

Mohamed Elsayed Mohamed Elsayed Nassar

Demonstrator in Engineering Mathematics and Physics Department
Faculty of Engineering at Shoubra, Benha University

Faculty of Engineering-Shobra
Benha University

2013

A fast multi-pole expansion applied to bending of
plates integral equations

by

Mohamed Elsayed Mohamed ElsayedNassar

 Demonstrator in Engineering Mathematics and Physics Department
Faculty of Engineering at Shoubra, Benha University

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science in Engineering Mathematics

Supervisor

Prof. Dr. Abd-Elrahman Saad Prof. Dr. Youssef F. Rashed

Professor of Applied Mathematics Professor of Structural Analysis and Mechanics
Mathematical and Physical Eng.Dept. Structural Eng.Dept.

Faculty of Engineering - Shoubra Faculty of Engineering
Banha University Cairo University

Dr. Mohamed Y.Akl

Lecturer of Applied Mathematics
Mathematical and Physical Eng.Dept.

Faculty of Engineering - Shoubra

Banha University

Faculty of Engineering-Shobra
BenhaUniversity

2013

APPROVAL COMMITTEE

The Committee on Final Examination recommends that the thesis by

Mohamed Elsayed Mohamed ElsayedNassar

entitled

A fast multi-pole expansion applied to bending of

plates integral equations

be accepted in partial fulfillment of the requirements for the degree of
Master of Science in Engineering Mathematics

EXAMINERS COMMITTEE:

Prof. Dr. Abd-Elrahman Saad …………………………

Professor of Applied Mathematics Supervisor
Mathematical and Physical Eng.Dept.
Faculty of Engineering - Shoubra
Benha University

Prof. Dr. Mohamed Mohamed Ali Nassar …………………………

Professor of Applied Mathematics External Examiner
Mathematical and Physical Eng.Dept.
Faculty of Engineering
Cairo University

Prof. Dr. Youssef Fawzy. Rashed ..

Professor of Structural Analysis and Mechanics Supervisor
Structural Eng.Department
Faculty of Engineering
Cairo University

Ass.Prof. Dr. Moawad El-Sharnoby ..

Ass.Professor of Applied Mathematics Internal Examiner
Mathematical and Physical Eng.Dept.
Faculty of Engineering - Shoubra
Benha University

Date: ……………………….

4

To my father,

my mother,

my Brother,

my sisters,

my wife,

and my son.

Without whom,

none of this effort was mint to happen

5

ACKNOWLEDGEMENT

First of all due thanks go to God the most merciful and most graceful. Who without

his guidance and inspiration nothing could have been accomplished.

I would like also to thank my professors in my college for the advices and support.I

would like to express my gratitude to everyone who contributed, in different ways, to

completion of this work. Inevitably some names will be missing here.

I wish to express my great appreciation and thanks to Prof. Dr. Abd-Elrahman

Saad, Professor of Applied Mathematics, Mathematical and Physical Engineering

Deptartement,Faculty of Engineering Shoubra, Benha University, for his kind guidance,

valuable advice, sincere fatherhood, and continuous caring during this research.

I also wish to express my deep indebtedness to Prof. Dr. Youssef Fawzy Rashed,

Professor of Structural Analysis and Mechanics, Structural Engineering Department, Faculty

of Engineering, Cairo University, for his generous guidance and encouraging, sincere help,

consistent support by all means and asking, valuable suggestions, and precise advice through

all stages of this research work, I express my true thanks and gratitude for opening my mind

to the true values of sincere and creativity. I have learned many lessons in working under his

guidance and leadership that I will remember for an extremely long time.

Sincere thanks go Dr. Mohamed Y. Akl, Applied Mathematics, Mathematical and

Physical Engineering Deptartement, Faculty of Engineering - Shoubra, Benha University, for

his encouragement and advice in theearly stages of my work: the privilege of studying under

him will always remain amemorable part of my life.

I am indebted to Dr. Moawad El-Sharnoby for his kind and spontaneous help with

the integrations, without which the completion of this work would have to be delayed.

I would like to express my very great appreciation to Dr. Morcos saman for his

valuable and constructive suggestions during the planning and development of this research

work. His willingness to give his time so generously has been very much appreciated.

My thanks also go to my colleagues, especially Eng.Mohamed Ahmed kamal,

Eng.Taha Hassan, Eng. Mostafa Mobasher and all friends who are supported me all the

way to achieve this work.

6

A fast multi-pole expansion applied to bending of plates
integral equations

by

Mohamed Elsayed Mohamed ElsayedNassar

An Abstract of

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science in Engineering Mathematics

Faculty of Engineering -Shobra

Benha University

This Thesis presents a new fast multi-pole boundary element formulation for the

solution of Reissner’s plate bending problems. The solution of Reissner’s plate

bending problems using the conventional direct boundary element method leads to a

non-symmetric fully populated system of matrices. The complexity of the solution

then becomes of the order O(N3) mathematical operations, where N is the total number

of problem unknowns. Hence, the use of fast multi-pole technique becomes practically

essential in case of solving large-scale problems by the direct boundary element

method.

The suggested formulation is based on representing the fundamental solutions as

function of potentials. These potentials and their relevant fundamental solutions are

expanded by means of Taylor series expansions. In the present formulation, equivalent

collocations are based on the first shift expansion of kernels. This is achieved by

representation of far field integrations by series expansions and carrying out

summations of far clusters, whereas the near field integrations are kept to be computed

directly.

In the presented implementation, the fast multi-pole boundary element method is

coupled with the iterative solver: Generalized Minimal Residual System (GMRES).

The computational complexity is rapidly reduced to be O(N log N). Numerical

examples are presented to demonstrate the efficiency, time saving, and accuracy of the

7

formulation against the conventional direct BEM. The accuracy of the results is traced

by cutting Taylor series to few terms. It was proven via numerical examples that three

terms are enough to produce sufficient accuracy with substantial reduction of solution

time.

8

Table of Contents

Chapter 1: Introduction and Background………………………………………………..12

1.1Introduction………………………………………………..12

1.2 Numerical methods………………..……………………………….........................13

1.2.1 Finite difference method (FDM) ……………………………………………....13

1.2.2 The finite element method (FEM) ……………………………...…….…..........13

1.2.3 The boundary element method (BEM) ……………………………..............14

1.2.4 A Comparison of the FE and BE methods…………………………….….........17

1.2.5The fast multi-pole method (FMM)…….…………………………………........18

1.3 Thesis objectives…………………….…………………..…………………………21

1.4 Thesis organization…………………………………….……..................................21

1.5 Conclusions…………………………………….…………………………………..22

Chapter 2: Boundary element method for Reissner’s plate……………………………...23

2.1 Introduction………………..……………………………………………………….23

2.2 Conventional BEM for Reissner’s plate……………………….…..………………23

2.3. Fundamental solutions in terms of potentials…….……….…...…………………..27

2.4. Conclusions……………………………………………………….……………….31

Chapter 3: The Proposed Fast Multi-pole Method (FMM)………………...……...…….32

3.1. Introduction…………..……………………………………………………………32

3.2. The fast multi-pole idea……………………………………………..…………….32

3.3. Taylor series expansions…………………………………………….…………….32

3.4. Moments coefficients……………………………………………………..……….36

3.5. Moments grouping………………………………………………………..……….40

3.6. Moment to moment transferring……………………………………..……………40

3.7. Final collocation and matrix form………………………………...……………….42

3.8. Conclusions…………………………………………….………………………….43

Chapter 4: Programing for the proposed FMM………………………………………....44

4.1. Introduction……….……………………………………………………………….44

4.2. Work flow process……………………………………….…………...…………...44

4.2.1 Subroutine fmmmain……...…………….……………………………………...45

4.2.2 Subroutine tree……………………………...………………………………….45

9

4.2.3 Subroutine fmmbvector……………...…………………………………………47

4.2.4 Subroutine dgmres…………………………………………...…………………48

4.2.5 Subroutine msolve……………………………………………………...………48

4.2.6 Subroutine matvec……………………………...………………………………48

4.2.7 Subroutine upward………………………………………………………..……48

4.2.8 Subroutine dwnwrd…………………………………..………………………...48

4.3. Conclusions……………………….……………………………………………….49

Chapter 5: Numerical Examples…………………………………………………………50

5.1 Introduction…………………..…………………………………………………….50

5.2 Cantilever plate………………………………………………………….…………50

5.3 Slab with circular opening……………………………………………..…………..53

5.4. Conclusions…………………..……………………………………………………55

Chapter 6: Summary and Conclusions…………………………………………………..57

6.1 Summary ………………………………………………………………………….57

6.2 Conclusions…………………..…………………………………………………….57

6.3 Future work……………………………………..………………………………….58

10

LIST OF TABLES

Table (5. 1): Results of rotation and deflection of point (A) in the cantilever plate. 52

Table (5. 2): Generalized displacements of point (A) in the squared slab. 55

Table (5. 3): Generalized displacements of point (B)in the squared slab. 55

11

LIST OF FIGURES

Figure (2.1): The positive directions for the internal straining actions. 24

Figure (2.2): Positive directions for the generalized displacement................................... 24

Figure (3.1): Schematic diagram for the fast multi-pole far-field collocation. 39

Figure (3.2): Schematic diagram for the fast multi-pole far-field collocation. 39

Figure (4.1): Flowchart for a FMM program .. 44

Figure (4.2): A cell structure covering all the boundary elements 46

Figure (4.3): Cell number for level 0, 1 and 2 for the model .. 46

Figure (4.4): The relation between cells in the tree structure ... 47

Figure (5.1): The considered cantilever plate ... 51

Figure (5.2): Comparison of CPU time for cantilever plate problem 51

Figure (5.3): The considered squared slab with circular opening 54

Figure (5.4): Comparison of CPU time for square plate problem 56

12

Chapter 1: Introduction and Background

1.1 Introduction

Many engineering problems can be expressed using partial differential

equations (PDEs). In early stages, solutions for PDES could only be obtained using

analytical solution. However, analytical solutions are only applicable in some simple

cases. In cases of complicated problems, analytical methods become increasingly

tedious or even impossible. After the invention of modern computers, researchers

focused on applying numerical methods in solutions of PDES. Such methods

transform PDEs to algebraic equations that computer codes can solve. Many famous

numerical methods have been used, such as finite difference method (FDM), finite

element method (FEM) and boundary element method (BEM). The boundary element

method is one of the strongest numerical methods in this field, but its application is

limited only for small scale problems with simple geometry. In case of large scale

problems, the BEM needs large memory for storage of coefficients matrices and a

fully populated coefficient matrix is required to be solved. In other words, BEM

produces dense and non-symmetric matrices, require O(N2) operations for computing

the coefficient and O(N3) operations for solving the system by using direct solvers N is

the number of unknowns. This disadvantage is not found in the finite element method,

so that FEM is widely used in programming. In order to enable BEM to lead against

FEM, many researches focused their works to overcome the previously mentioned

problem concerned large scale problems solutions. So that the fast multi-pole method

(FMM) that originally invented to solve N-particle large scale problems was applied in

the BEM different applications. With the help of the FMM, the BEM can now solve

large scale problems that are beyond the reach of other methods because its capable of

reduce the computer processing unit (CPU) elapsed time and accelerate conventional

BEM calculations to O(N). However one of these applications, which is the solution

of Ressiner’s plate bending problems was not carried out yet. In this thesis, a novel

technique which uses the Fast Multi-pole Method in solving Ressiner’s plate bending

problems is introduced. To justify the selection of BEM into this thesis work, a review

13

is introduced for different numerical methods and their advantages and disadvantages

in next sections.

1.2 Numerical methods

In this section the numerical methods that were widely used are reviewed

including their advantage and disadvantage. Later, a comparison is made to

demonstrate why the BEM is selected in this thesis work.

1.2.1 Finite difference method (FDM)

The FDM is a method used in the solution of boundary value problems for

PDES. The FDM is based on a mathematical discretization of the plate continuum.

For this purpose, the plate is covered by a two-dimensional mesh; the partial

derivatives in the governing plate equation are replaced by corresponding finite

difference quotients at each mesh point. In this way, the differential equation

governing the displacements is transformed into algebraic equations.

Advantage of the FDM:

a) Conceptual simplicity.

b) Mathematical simplicity.

c) Ease of programming.

Disadvantage of the FDM:

a) It requires more work to achieve problem modeling and simulation.

b) The matrix of the approximating system of linear algebraic equations if

asymmetric, causing some difficulties in numerical solution of this system.

c) An application of the FDM to domains of complicated geometry may run into

serious difficulties.

d) Inaccuracies due to many assumptions and approximations.

1.2.2 The finite element method (FEM)

According to the FEM [1], the whole domain of the plate under consideration is

discretized into small elements which are only connected at their corner nodes. The

unknowns of the problem are the deflections and rotations in the directions of

prescribed degrees of freedom (generalized displacements). The values of these

unknown are obtained from the solution of equilibrium and compatibility equations

14

assembled from all elements. Due to the wide usage of the FEM, there are many

established commercial programs that based on the method such as (SAP2000) [2]

…etc.

Advantage of the FEM:

a) Ability of modeling different geometries and nonlinear materials.

b) Obtained system matrices are positive definite, banded, and sparse.

c) Widely tested approach.

d) Commercial availability.

e) Flexibility.

Disadvantage of the FEM:

a) The FEM requires the use of powerful computers of considerable speed and

storage capacity due to domain discretization in large scale problems.

b) It is difficult to ascertain the accuracy of numerical results when large

structural systems are analyzed.

c) The method is poorly adapted to a solution of the so-called singular problems

(e.g., plates and shells with cracks, corner points, discontinuity internal actions,

etc.), and of problems for unbounded domains.

d) The method presents many difficulties associated with problems of

C1continuity and nonconforming elements in plate (and shell) bending analysis.

e) Large effort and time consume in discretization of the domain and no flexibility

in modification.

f) Stress concentration.

g) Element values average at vertex.

1.2.3 The boundary element method (BEM)

The boundary element method is a numerical computational method for solving

linear partial differential equations which have been formulated as boundary integral

equations. It can be applied in many areas of engineering and science including solid

mechanics [3, 4], fluid mechanics [5, 6], acoustics [7, 8], fracture mechanics [9], and

plasticity [10].

In recent years, the BEM has emerged as a powerful alternative to the FDM and FEM.

While these numerical solution techniques require the discretization of the entire plate

15

domain, the BEM applies discretization only at the boundary of the continuum.

Boundary element methods are usually divided into two categories: direct and indirect

BEMs. The direct BEM formulates the problem in terms of variables that have

definite physical meanings, such as displacements of the boundary nodes of the plate.

In contrast, the indirect BEM uses variables whose physical meanings cannot always

be clearly specified. The BEM’s history can be traced back to 1963 when Jaswon and

Symm [11] proposed an integral method, in which; numerical solutions of 2-D

potential problems were attempted by exploiting Green’s third identity. Their attempt

of using Green’s third identity inspired Rizzo [3] in his research on elasticity, in which

the Somigliana identity received special attention. Rizzo’s first paper [4] on solving

elastostatic problem using integral equation approach has much stimulated the modern

day development of the boundary element method. Later on, the boundary integral

equation method has been explored and extended to many other research areas. The

term “boundary element method” was first appeared in [12] in 1977 after the first

paper by Lachat who incorporated shape functions, Gauss quadrature techniques

borrowed from the FEM into boundary integral equation method. For the acoustic

problem governed by Helmholtz equation, the first effort of using integral equation

appeared in the same year that Jaswon and Symm published their first paper [11] of

integral equation for potential problems. Chen and Schweikert [7] solved 3-D sound

radiation problems using Fredholm integral equation of the second kind. Early works

on boundary integral equation method for acoustic problems also include Chertock’s

research [13], in which he predicted sound radiation from vibrating surfaces using

integral equation, and Copley’s papers [14, 15], in which the non-uniqueness

difficulties of the exterior boundary integral equation (BIE) at eigen frequencies

associated with corresponding interior problems was first reported. A similar integral-

equation-based method, T-Matrix method, was developed by Waterman [8] in 1965

for solving electromagnetic problems. To tackle the fictitious eigen frequency

difficulties reported in Ref. [14], Schenck [16] in 1968 came up with an idea of adding

some additional Helmholtz integral relations in the interior domain. Burton and Miller

[17] in 1971 proposed another technique to overcome the fictitious frequency

difficulties by linearly combining the conventional boundary integral equation (CBIE)

16

and the normal derivative of the BIE (HBIE) to circumvent this problem. Subsequent

researches on the BEM include, but not limited to:

1) Improving efficiency, including parallel computation [18], iterative solver [19,

20], fast multi-pole method as will be detailed later [21, 22, 37], and many

others. With the intensive research, the BEM continues to be a viable numerical

simulation tool for many problems.

2) New technologies and formulations to extend the applicability of the BEM, for

example: half-space problems [23], indirect BEM [24], Galerkin BEM [25],

transient analysis [26], inverse BEM [27], Eigen frequency determination [28],

FEM-BEM coupling [29], and hybrid BEM [30].

3) Effective integral evaluations, especially for the hyper-singular integrals.

Various methods have been proposed, for example, direct evaluation in

Hadamard finite part sense [31], regularization with Taylor expansions [32, 33]

or Fourier–Legendre series [34], transforming into integrals with kernel of

tangential derivatives or double surface integrals [17], indirect evaluations [35],

and singularity subtraction [36].

Advantage of the BEM:

a) Reduces problem dimension.

b) Less unnecessary information.

c) Focus on the body boundary.

d) Good for incompressible materials and unbounded domains.

e) Easy to define and vary boundary elements.

f) Accuracy.

g) Good for stress concentrations.

Disadvantage of the BEM:

a) Unfamiliar mathematics.

b) Not efficient for nonlinear problems.

c) Fully populated matrices.

d) Matrix is not symmetric, so it is non-convenient for large scale problems.

17

1.2.4 A Comparison of the FE and BE methods

In this section some major differences between the two methods are outlined.

Depending on the application some of these differences can either be considered as

advantageous or disadvantageous to a particular scheme.

1) FEM: An entire domain mesh is required.

 BEM: A mesh of the boundary only is required.

 Comment: Because of the reduction in size of the mesh, one often hears of

 people saying that the problem size has been reduced by one dimension. This is

 one of the major pluses of the BEM - construction of meshes for complicated

 objects, particularly in 3D, is a very time consuming exercise.

2) FEM: Entire domain solution is calculated as part of the solution.

BEM: Solution on the boundary is calculated first, and then the solution at

domain points (if required) are found as a separate step

Comment: There are many problems where the details of interest occur on the

 boundary, or are localized to a particular part of the domain, and hence an

entire domain solution is not required.

3) FEM: Reactions on the boundary typically less accurate than the dependent

variables.

 BEM: Both “u” and “q” of the same accuracy.

4) FEM: Differential Equation is being approximated.

 BEM: Only boundary conditions are being approximated.

 Comment: The use of the Green-Gauss theorem and a fundamental solution in

 the formulation means that the BEM involves no approximations of the

 differential Equation in the domain - only in its approximations of the boundary

 conditions.

5) FEM: Sparse symmetric matrix generated.

 BEM: Fully populated non symmetric matrices generated.

Comment: The matrices are generally of different sizes due to the differences

in size of the domain mesh compared to the surface mesh. There are problems

where either method can give rise to the smaller system and quickest solution -

18

it depends partly on the volume to surface ratio. For problems involving

infinite or semi-infinite domains, BEM is to be favored.

6) FEM: Element integrals easy to evaluate.

 BEM: Integrals are more difficult to evaluate, and some contain integrands that

 become singular.

Comment: BEM integrals are far harder to evaluate. Also the integrals that are

the most difficult (those containing singular integrands) have a significant

effect on the accuracy of the solution, so these integrals need to be evaluated

accurately.

7) FEM: Widely applicable. Handles nonlinear problems well.

 BEM: Cannot even handle all linear problems.

Comment: A fundamental solution must be found (or at least an approximate

one) before the BEM can be applied. There are many linear problems (e.g.,

virtually any non-homogeneous equation) for which fundamental solutions are

not known. There are certain areas in which the BEM is clearly superior, but it

can be rather restrictive in its applicability.

8) FEM: Relatively easy to implement.

 BEM: Much more difficult to implement.

Comment: The need to evaluate integrals involving singular integrands makes

the BEM at least an order of magnitude more difficult to implement than a

corresponding finite element procedure.

1.2.5 The fast multi-pole method (FMM):

The fast multi-pole is not a method to solve a certain problem, but it is a technique

that applies in a certain method to improve its efficiency. In conventional BEM, since

the formed equation matrix is found to be dense and nonsymmetrical, this

characteristic limits the use of the conventional BEM to medium size problems and

simple geometries. In other words, the complexity order of conventional BEM

calculations is O(N3) numerical operations, where N is the number of unknowns.

However, it was concluded that this order can be reduced to O(N log N) or O(N) with

the help of what is named first shift or second shift of fast multi-pole method (FMM)

respectively. Some O(N log N) and O(N) algorithms were first reported to solve

19

particle simulation problems in the 1980s. Barnes and Hut [38] used a tree data

structure and the concept of multi-pole expansion to calculate the matrix-vector

product without forming the matrix explicitly. Their tree-code algorithm reduces the

calculation complexity from O(N3) to O(N log N). By introducing the concept of the

second shift, Greengard and Rokhlin’s [39], the complexity was further reduced to

O(N). The first FMM formulations [38, 39] for the solution of the particle simulation

problem have influenced the BEM numerical solution of boundary value problems

especially in potential theory [40].

This novel technique for the solution of the N particle simulation problems has

immediate implications on the BEM numerical solution of boundary value problems

in potential theory, as its discrete linear system is the product of pair-wise interactions

between sources. By using the tree structure, we can rearrange the precondition fully

populated matrix according to boundary representation by near field and far field

elements. The kernel expansion and the grouping technique, facilitate to translate the

fully populated matrix which obtained from conventional BEM to sparse matrix in

FMM with band width depend on the number of levels in the tree structure but this

translation forced us to assume some unknowns and convert form direct solver to

iterative solver. Recently, there has been an increasing interest in the analysis of the

performance of iterative solutions of the equation sets arising from the BEM

formulation [41– 45].

Algorithms that utilize FMM idea may be classified into two categories: spherical

harmonic expansions and Taylor series expansions [46].

Several O(N) algorithms for the direct BEM formulation of 3D elasticity problems

based on spherical harmonic expansions are available in the literature. Among them,

the works of Fu et al. [47] and Hayami and Sauter [48] are worth of special attention.

Fu et al. decomposed the original 3D elasticity fundamental solution into five terms in

such a way that each of them can be expanded in terms of spherical harmonic series

with their corresponding duality principle. They tested the performance of the

proposed algorithm by analyzing the problem of the elastic interaction of hundreds of

solid spherical particles in which N = O (105): Hayami and Sauter [50] on the other

hand, proposed an expansion of the fundamental solution in terms of the spherical

20

harmonic expansion of 1/R and the derivatives of R. Order O(N log N) algorithms in

terms of the Taylor series expansion of the fundamental solution are also available in

the literature for elasticity problems. Peirce and Napier [49] developed, using a Taylor

series multi-pole expansion, an algorithm to solve a 2D problem of multiple cracks in

an elastic media.

It has been previously reported that multi-pole boundary element strategy based on

Taylor expansions will result in computer codes which require O(N log N) operations

for problems with N DOF. Popov and Power [51] presented a multi-pole BEM

strategy developed for 3D elasticity problems which is also based on Taylor

expansions but requires only O(N) operations. Popov and Power’s efficient algorithm

results from the use of a clustering technique, first shift, in combination with an

additional Taylor series expansion around the collocation points, second shift. The

idea of the use of the second shift for a multi-pole scheme based on the Taylor series

expansions was original proposed by Gomez and Power [52] to solve a 2D viscous

flow problem using an indirect BEM formulation.

In conventional calculations of BEM, the matrices are fully populated and non-

symmetric. Therefore, the solution of the system when using direct solvers is

expensive in computational costs. To overcome this drawback and to increase the

efficiency of fast multi-pole solution, iterative solvers have to be adopted in the FMM

formulation. Among these iterative techniques, Krylov subspace iterative methods are

acknowledged as very effective iterative techniques for the linear systems arising from

BEM formulation, especially, GMRES (generalized minimal residual system) [53,

54]. The GMRES is an implicit iterative algorithm, and it can be applied to FMBEMs

in conjunction with FMM.

In this thesis, the application of FMM on the conventional BEM for plate bending

problems is presented. In tracing the history of formulations based on conventional

BEM for plate bending problems [55], it is recorded the work of Bezine [56] and Stern

[57] for the thin plate theory and by Van der Weeen [58] for the thick plate theory.

The plate theory according to Reissner [59] represents a general method for solving

21

both thin and thick plates. In this thesis, the formulation in [58] is considered as a base

in applying FMM on the conventional BEM.

1.3 Thesis objectives

The objectives of this thesis are:

1. To create the mathematics of the fast multi-pole formulation applied to

direct boundary element method solution of shear-deformable plate bending

problems.

2. To produce sparse matrix instead of fully populated matrix developed in

conventional boundary element coefficient matrix.

3. To investigate and set the possible strategies for the implementation of the

derived formulation into feasible algorithm.

4. To implement the derived formulation in computer code and utilizing the

iterative solver Generalized Minimal Residual System (GMRES).

5. To test the proposed formulation by applying the developed code to

problems and track the efficiency of the solution.

1.4 Thesis organization

This thesis consists of five chapters after this chapter. These chapters contain

the followings:

Chapter 2: The basic unit load and unit displacement (fundamental solutions) are

reviewed. Basic fundamentals of the boundary element method (BEM) for analysis of

thick plate are presented. The first principles of Reissner plate bending are reviewed

including the definitions of stresses, strains, tractions, and boundary integral equation

introduced

Chapter 3: In this chapter the mathematical of fast multi-pole method are derived.

Chapter 4: In this chapter, a developed computer code for Thick Plate Bending

Problems for the suggested formulations is presented.

Chapter 5: This chapter presents two examples including comparison between results

of the fast multi-pole method for the thick plate theory and results of analytical

solution.

22

Chapter 6: In this chapter a summary, conclusions and recommendations for future are

given.

1.5 Conclusions

In this chapter, an introduction about history of plate theory development, the

numerical methods used in the solution of partial differential equations (PDEs) were

presented. The advantages and disadvantages for such a method were reviewed. Short

notes about fast multi-pole method also were reviewed. Finally the structure of this

thesis was presented. In the next chapter the relevant theoretical basis for conventional

BEM of Reissner’s plate bending is reviewed.

23

Chapter 2: Boundary element method for Reissner’s plate

2.1 Introduction

In this chapter, the BEM application on Reissner’s plate bending problems is reviewed [62].

The conventional BEM formulation of Reissner’s plate bending theory is introduced. Then

the fundamental solutions are derived based on their potential. Finally a conclusion is made

and given.

2.2 Conventional BEM for Reissner’s plate

Consider an elastic plate of domain Ω and boundary Γ. The plate has a

thickness h and is lying in the x1-x2 plane where x3=0 is located at the mid surface of

the plate. The indicial notation is used in this thesis where the Greek indices vary from

1 to 2 and the Roman indices vary from 1 to 3. According to Reissner’s plate bending

theory [59], the differential equations that are governing the equilibrium can be

written at any arbitrary point ,in absence of body forces, as follows [59]:

0)ξ()ξ(3  ααβ,β QM

0)ξ(,3 Q (2.1)

where, M() and Q3()are the bending moments and shear forces stress resultants

respectively. The stress-resultant generalized displacement relationships can be

written at point as follows [59]:














  




)ξ(

1

2
)ξ()ξ(

2

1
)ξ(,,, uuuDM (2.2)

 )ξ()ξ(
2

1
)ξ(,3

2
3  


uuDQ 


 (2.3)

where
)1(12 2

3




Eh
D is the plate modulus of rigidity,  is the shear factor, E and v are

the Young’s modulus and Poisson’s ratio respectively, u() denotes the rotation in

two directions x1, and x2, u3 denotes the deflection in x3 direction at point  (for the

positive directions refer to Fig. (2.2)), and the symbol  denotes the identity matrix.

Using Eqs. (2.2) and (2.3), Eq. (2.1) can be re-written in condensed form as follows:

24

Figure 2.1: The positive directions for the internal straining actions.

Figure 2.2: Positive directions for the generalized displacement.

0)ξ(jijuL (2.4)

where Lij is the differential operator that can be written as follows:

 














































222

222

2

)1(

2

)1(
2

)1(

)1(

)1(

2

)1(









vDvD

vD

v

vvD

Lij (2.5)

in which
)x(

)(
)(




x


 , and 2 is the two-dimensional Laplace operator.

The direct boundary integral equation for Reissner’s plate can be written in the

following form [58]:

25






)x()x(

)x()x()xξ()x()x()xξ()ξ(
2

1
dt,Udu,Tu jijjiji (2.6)

Where uj(x) and tj(x) denote the boundary generalized displacement and traction

vectors respectively.  and x denote a source point and a field point located on the

boundary respectively. Uij(,x) and Tij (,x) denote the two-point fundamental solution

kernels [58]:

      
 ,,)1(2)(81)ln(2)1()(8

)1(8

1
)xξ(RRvRARvRB

vD
,U 


 (2.7)

   


,3 1)ln(2
8

1
)xξ(RRR

D
,U  (2.8)

)xξ()xξ(33 ,U,U   (2.9)

  )ln(81)ln())(1(
)1(8

1
)xξ(2

233 RRRv
vD

,U 





 (2.10)

     


nRRvRKRRA
R

,T N ,,1 1)()(2)(4
4

1
)xξ(




    nRRRvRKRRAnRvRA ,,,1, 1)()(2)(821)(4   

(2.11)































 nRRnR

v

vv
,T ,,3 21)ln(

1

1
2

8

)1(
)xξ( 


 (2.12)

     nRRvRAnRvRB,T ,,

2

3)1(4)(81)ln(2)1(2)(8
16

)xξ( 



 (2.13)

  














)1(

8
)(2)ln(4

16
)xξ(2,

33
v

RR
R

R
,T n 


 (2.14)

where :











)(

1
)(

)(

2
)()(10

R
RK

R
RKRA





 (2.15)











)(

1
)(

)(

1
)()(10

R
RK

R
RKRB





 (2.16)

in which K0(R) and K1(R) are modified Bessel functions [61].

26

 In order to solve the boundary integral equation, Eq. (2.6), the boundary is

discretized (without losing the generality) into constant elements at which, the

generalized displacements and/or the tractions are prescribed at some nodes. The

boundary unknowns are obtained by rewriting Eq. (2.6) at a number of collocation

nodes equals to the number of unknowns. The solution of such equations will produce

all boundary unknowns [58]. Hence, Eq. (2.6) can be rewritten as follows:

  
  


N

j
jijj

N

j
jijji

jj

dUtdTuu
11

)x()xξ,()x()x()xξ,()x()ξ(
2

1
 (2.17)

where N is the number of boundary elements. If Eq. (2.17) is applied to all boundary

points (i=1 to N), the following system of equations is obtained:

   









N

j
NNN

N

i

N

j
NNN

N

i 1
1333

11
1333

1

][][tGuH (2.18)

where {u} and {t} are the vectors of boundary generalized displacements and

tractions, respectively, and [H] and [G] are the well-known boundary element

influence matrices. Reordering Eq. (2.18) for separating boundary unknowns from

boundary known values, the following system of equations will be formed as:

    131333][  NNNN BxA (2.19)

where the vector {x} represents all boundary unknowns; generalized displacements or

tractions, and the vector {B}contains all remaining prescribed boundary conditions.

By solving Eq.(2.19), all boundary unknowns are obtained. The matrix [A] in Eq.

(2.19) is dense and nonsymmetrical, so that when it is solved by any direct solver such

as Gauss elimination or LU decomposition, the solution requires O(N3) numerical

operations.

2.3. Fundamental solutions in terms of potentials

The purpose of this section is to define the fundamental solutions Uij(,x) and

Tij (,x) in terms of suitable potentials as pre request for the developed fast multi-pole

expansion. Following Hörmander steps [60], the fundamental solution could be

defined as follows:

jiji ,,UL  )xξ()xξ( (2.20)

27

Where (, x) is the Paul Dirac delta distribution, and iL is given in Eq. (2.5). In order

to solve Eq. (2.20), an operator decoupling scheme is carried out as follows. The co-

factor matrix of the original differential operator in Eq. (2.5) can be obtained as

follows:

   

   














































4224

2
222

22

222
22

22242
22

*

)1()3(2
4

)1(

4

)1(

4

)1(

)1(

)1(

4

)1(









vv
vDvD

vD

v

vvD

L i

 (2.21)

The corresponding determinant of the matrix operator in Eq. (2.21) can be obtained as

follows:

 2242
23

*

4

)1(
det  




vD
L i (2.22)

A suitable potential (,x) has to be obtained first from the following differential

equation:

)xξ()xξ(det * ,,L i  (2.23)

i.e:

 )xξ()xξ(
4

)1(2242
23

,,
vD

 


 (2.24)

A possible solution of Eq. (2.24) yields the following potential:

 
       











 RRRRK

D
, 


ln

4

1
ln

1

2
)xξ(22

0263
 (2.25)

whereK0(R) is the modified Bessel functions [61].

Define:

 )()xξ(R, (2.26)

so its relevant derivatives can be obtained as follows:

  ,, R (2.27)

   


,,,,, RRRR
R




 (2.28)

R





 2 (2.29)

   2

2

,
,

2 RR
R

R



 (2.30)

28

    






 








32,,,,
)4(

,
2 3

RR
RR

R
RR





  (2.31)

32

)4(4 2
RRR











 (2.32)

where
R




)(
)(

(2.33)

Then, the final expression for Uij (,x) can be obtained as follows:

)xξ()xξ(* ,L,U jiij    (2.34)

Considering Eq. (2.21), Eq.(2.34) can be expanded to give:

 )xξ(
)1(

)1(

4

)1(
)xξ(22242

22

,
v

vvD
,U 
















   (2.35)

 )xξ(
4

)1(
)xξ()xξ(222

22

33 ,
vD

,U,U 


   (2.36)

 )xξ()1()3(2
4

)1(
)xξ(4224

2

33 ,vv
vD

,U 


  (2.37)

Substituting from Eqs.(2.27) to (2.32) into Eqs.(2.35) to (2.37), the expressions for

Uij(,x) can be obtained as follows:




















 
















 



32

)4(2
,, 33

)1(

)1(1
)xξ(

RRv

v

R
RR

D
,U

























 


















 














3232

)4(2

)1(

)1(
2

)1(

2

RRRv

v

RRRvR





 (2.38)




















 2

2

,

3

1
)xξ(





RRD

R
,U (2.39)



















 2

2

)4(

233)3(
2

42
)1(

1
)xξ(





v

RRDv
,U














 
 42

2
)1()3(

2
vv

RR
 (2.40)

Eqs. (2.38) to (2.40) represent the final expressions for the generalized displacements

kernels Uij(,x) in terms of the scalar potential  and its relevant derivatives.

Substitution of (,x) from Eq.(2.25) into Eqs.(2.38) to (2.40), the explicit form for

the generalized displacement kernels are obtained as given in Eqs.(2.7) to (2.10).

29

The corresponding expressions for the generalized traction kernels Tij(,x)are

also derived considering the stress-resultant generalized displacement relationships in

Eqs. (2.2) and (2.3).Substituting from Eq.(2.38) into Eq. (2.2) gives:














  




)xξ(

1

2
)xξ()xξ(

2

1
)xξ(,,, ,U,U,UD,M (2.41)

Hence the corresponding traction kernel can be obtained from:

)x()xξ()xξ( n,M,T  (2.42)

where n(x) is the component of the outward normal at the field point (x). The

following relevant derivatives can be obtained by considering Eq.(2.38):

      



 RvRvvRvR

vDR
,U)1()1(3)1()1(3

)1(

1
)xξ(2222

,4,

      
 22222

,
)4(3 6)1()3(3)1()3(3)1(RRvRvvRvRRv

        RvRvvRvRRRv)1()1(3)1()1(32)3(2222
,

)5(4)4(3

         RvRvvRvRRRRv)1()1(15)1(3)1(15)1(2222
,,,

)4(3

  )5(4)4(3222)1()1(2)1()1(3  RvRvRvRv  (2.43)

and:

      )5(4)4(32222222

4

,

, 23133)xξ(


 RRRRRRR
DR

R
,U 

(2.44)

Substituting Eqs.(2.43) and (2.44) into Eqs.(2.41) and (2.42), gives:

   )1(2)2(66
2

1
)xξ(32

,,3
vRvRnRRn

R
,T   

  )21(2266)21(2232
, vRRRvRn  

   )5(43)4(222 2)1(232  vRvRRvR 

 )5(43)4(2
,,, 2463030)1( RRRRvRRR 

    nRRRv 423222 226)1( (2.45)

Also, substituting Eq. (2.39) into Eq. (2.2) gives:

30














  




)xξ(

1

2
)xξ()xξ(

2

1
)xξ(,3,3,33 ,U,U,UD,M (2.46)

The corresponding traction kernel can be obtained from:

)x()xξ()xξ(33  n,M,T  (2.47)

The following relevant derivatives can be obtained by considering Eq.(39):






























 2

22,3

11
)xξ(




RRRRD
,U



















 










 




RR
RR 2

2

)4(
,,

3

(2.48)

and:



































 2

2

)4(
,3

1
2

1
)xξ(




RRRD
,U (2.49)

Substituting Eqs.(2.48) and (2.49) into Eqs.(2.46) and (2.47), gives:

   )1(2212)1()1(42
2

1
)xξ(2222222

33 vRRvvRvRvRvn
R

,T  

        22623)1(2)4(32222
,,

)4(3
  nRRRRvRRvR 

(2.50)

For the generalized shear traction kernels, on the other hand, substituting from

Eqs.(2.38) and (2.39) into Eq. (2.3) gives:

 )xξ()xξ(
2

1
)xξ(,3

2
3 ,U,UD,Q  





 (2.51)

The corresponding traction kernel can be obtained from:

)x()xξ()xξ(33  n,Q,T  (2.52)

Knowing that (recall Eq.(2.39)):

)xξ()xξ(,3,3 ,U,U   (2.53)

And substituting Eqs.(2.38) and (2.48) into Eqs.(2.51) and (2.52), gives:

   3)4(222

3

2

3)2()1()1(1)xξ(RvRvRvRvn
R

,T 


 

  )1(3)3(3)4(22
,, vRvRvRvnRR   (2.54)

Similar to Eq. (2.54), substituting from Eqs.(2.39) and (2.40) into Eq. (2.3) gives:

 )xξ()xξ(
2

1
)xξ(,333

2
33 ,U,UD,Q  





 (2.55)

and the corresponding traction kernel is given by:

31

)x()xξ()xξ(3333  n,Q,T  (2.56)

The following relevant derivatives can be obtained by considering Eq. (2.40):



















 2

2

)4(
)5(

2

,

,33)3(
6

42
)1(

)xξ(






 v

RRDv

R
,U






















 2

22

2

2
)3(2

2
)3(

6






v

RR
v

RR
 (2.57)

And substituting Eqs.(2.39) and (2.57) into Eqs. (2.55) and (2.56), gives:

 )2(33)xξ(2223)4(4)5(

4

,
33  vRRRR

R

R
,T n 

   )1()2(3)2(3 442222 vRvRvRR   (2.58)

Expressions (2.45), (2.50), (2.54) and (2.58) represent the final expressions for the

generalized traction kernels Tij(,x) in terms of the scalar potential  and its relevant

derivatives. Substitution of (,x) from Eq. (2.25) into these equations, the explicit

forms for traction expressions are obtained as given in Eqs.(2.11) to (2.14).

2.4 Conclusions

In this chapter the shear-deformable plate bending theory was reviewed. The direct boundary

integral equations for the Reissner’s plate were discussed. Also, derivations of fundamental

solution based on their potentials are made. In chapter 3 the fast multi-pole method for the

Reissner’s plate will be discussed and demonstrate how this will technique overcome the

disadvantage of conventional BEM.

32

Chapter 3: The Proposed Fast Multi-pole Method (FMM)

3.1. Introduction
This chapter introduces the proposed first shift fast multi-pole (FMM) application to the

direct boundary element solution of shear-deformable plate bending. The basic idea of the

FMM is presented in section 3.2. Then, section 3.3 explains the Taylor series expansions of

fundamental solutions and its contributions to the presented FMM. In Sections 3.4 and 3.5,

the first shift of FMM and the concept of moments are introduced. The expansion

modifications corresponding to successive Taylor series application are illustrated in section

3.6. Finally, section 3.7 presents the final form of the coefficient matrix after the application

of FMM.

3.2. The fast multi-pole idea

In FMM technique, the boundary integration can be divided into two parts for each

collocation (source) point: The near-field and the far-field. The near-field part

represents the integration of the elements that are close to the collocation point, which

is computed by the same manner as that of the conventional BEM. Whereas, the far-

field part provides the other remaining contribution to the overall value of integral that

are corresponding to far boundary elements. This far-field contribution can be

indirectly evaluated using equivalent summations via the FMM. It has to be noted that

the far-field part represents the expensive part in conventional BEM calculations and

it is also the part that spoils the sparsely of the influence matrices. Thus, the purpose

of the FMM is to approximately and efficiently compute this expensive far-field part.

Taylor series expansion is used here in to provide the ability to compute the far-field

part as equivalent summations. Further details regarding FMM will be presented later

in next sections.

3.3. Taylor series expansions

As can be seen from section 2.3, both generalized displacement and traction

kernels can be represented as derivatives of the potential (,x). In order to obtain the

required multi-pole expansions for those kernels at far field zone, an expansion of

(,x) is carried out first using Taylor series. Consider the collocation point is , the

33

field point is x and the point at which the series expansion is performed is xo. Assume

that the distance x-xo -xo (see Fig.(3.1)), then the expansion of (,x) presented

in Eq.(2.25) could be formed as follows:

)x,ξ()xx()xx(
!

1
)x,ξ()x,ξ(

11 ,
1

okk
S

kokoo SSS
   





 (3.1)

Where
1

)xx(ko  represent the kth component of the vector)xx(o , and

S

S

kk

S

kk
xx 







1

1,


 .

Substituting Eq. (3.1) into Eq. (2.34), and carrying out the necessary derivations, the

expansion form of the generalized displacement kernel Uij(,x) can be obtained as

follows:

)xξ()xx()xx(
!

1
)xξ()xξ(

11 ,
1

okkij
S

kokooijij ,U
S

,U,U
SS 

  




 (3.2)

As it will be discussed later in this thesis, only terms up to the second derivatives for

the former expansion are enough to produce excellent accuracy. Therefore, the

required derivatives (first and second) are developed as follows: Recall Eq. (2.25), and

Eqs.(2.38) to (2.40), the first derivatives of the generalized displacement kernels at

point x in Eq. (3.2) can be obtained as follows:

   32)(32)1(2)(16)(4
)1(4

1
)xξ(1

22
0

33
132, 


 RRKRvRKRRK

RvD
,U

i




     ,,,1

22
0,,, 8)(8)1()(4 RRRRRKRvRKRRR iiii 

  iRRRK ,

33
1)(4 

(3.3)

  iiii
RRR

D
,U,U ,,,3,3 21)ln(2

8

1
)xξ()xξ( 




(3.4)

   ii
RRRv

RvD
,U ,

22

2,33 81)ln(2)1(
)1(8

1
)xξ(


 


(3.5)

The second derivatives of the generalized displacement kernels can be obtained as

follows:

34

  22
0

33
1

44
042,)1(8)(96)(32)(4

)1(4

1
)xξ(RvRKRRKRRK

RvD
,U

ij


 




   8)(8)1()(4192)(192 1

22
0,,,,1  RRKRvRKRRRRRRK ji  

       33
1

33
1)(4)(4 RRKRRK ijjijiij   

   jijiji RRRRRRRRKRvRK ,,,,,,1

22
0 32)(32)1(2)(16   

   jiijijij RRRRKRRKRRRRRR ,,
33

1
44

0,,,,,,)(8)(4   

(3.6)

 jiijjiijijij
RRRRRR

DR
,U,U ,,,,,,,3,3 2

4

1
)xξ()xξ( 




(3.7)

     ijjiij
RRvRRRv

RvD
,U 


8)ln(21)1(16)1(2

)1(8

1
)xξ(22

,,
22

22,33 




(3.8)

Similar to expansions of generalized displacement kernels, the expansion forms of the

moment and shear kernels can be represented as follows:

)xξ()xx()xx(
!

1
)xξ()xξ(

11 ,
1

okk
S

kokoo ,M
S

,M,M
SS 

   




 (3.9)

)xξ()xx()xx(
!

1
)xξ()xξ(

11 ,3
1

33 okk
S

kokoo ,M
S

,M,M
SS 

   




 (3.10)

)xξ()xx()xx(
!

1
)xξ()xξ(

11 ,3
1

33 okk
S

kokoo ,Q
S

,Q,Q
SS 

   




 (3.11)

)xξ()xx()xx(
!

1
)xξ()xξ(

11 ,33
1

3333 okk
S

kokoo ,Q
S

,Q,Q
SS 

   




 (3.12)

The required derivatives in Eqs.(3.9) to (3.12) for both moment and shear

kernels up to the second derivatives are obtained as follows: Recall Eqs.(2.41), (2.46),

(2.51), and (2.55), the first derivatives of moment and shear kernels at point x can be

obtained as follows:

  22
0

33
1

44
042,)1(8)(96)(32)(4

4

1
)xξ(RvRKRRKRRK

R
,M

i


 

   8)(8)1()(4192)(192 1

22
0,,,,1  RRKRvRKRRRRRRK i  

       33
1

33
1

22)(4)(22 RRKRRKRv iiiii   

   iii RRRRRRRRKRvRK ,,,,,,1

22
0 32)(32)1(2)(16   

    iiiii RRRRRRKRRKRRRRRR ,,,,
44

0
33

1,,,,,,)(2)(4   

 iRRRv ,,
224 

(3.13)

35

    iiiii
RvRRvRRRv

R
,M ,,,,,,,3)1()1()1(2

4

1
)xξ( 




(3.14)

  ii
RRRRRKRRKRRK

R
,Q ,,,1

22
0

33
13,3 8)(8)(4)(

2

1
)xξ( 







     iiii RRRKRRRRRKRRK ,

33
1,,,1

22
0)(2)(2)(  

(3.15)

 iii
RR

R
,Q ,,2,33 2

2

1
)xξ( 




(3.16)

The second derivatives of moment and shear kernels can be obtained as follows:

 33
1

44
0

55
152,)(144)(24)(2

4

1
)xξ(RRKRRKRRK

R
,M

ij


 




   ji RRRRRRRKRvRK ,,,,,1
22

0 768)(768)1(24)(384  

   16)(16)1()(8)(2 1
22

0
33

1  RRKRvRKRRK 

   ,,,,,,, RRRRRRR jiijjiijjiijji 

  33
1,,,,,)(2 RRKRRRRR ijijijijji   

   ,,,,,,

44
0)(RRRRRRRRK ijijijjiijji 

    33
1

44
0,,

22)(16)(22 RRKRRKRRRv ijji   

   jiij RRRRRRRRKRvRK ,,,,,,1
22

0 96)(96)1(4)(48   
  jijiijijji RRRRvRRRRRRRRRRRR ,,,

22
,,,,,,,,,,,, 8   

(3.17)

  ijijjijijiij

RRRRRRRRvRRRRv
R

,M ,,,,,,,,,,,,2,3)1(2)1(8
4

1
)xξ( 







        ijjiijjiij vvRRvRR )1()1()1(2 ,,,, (3.18)

  48)(48)(24)(8)(
2

1
)xξ(1

22
0

33
1

44
04,3 


 RRKRRKRRKRRK

R
,Q

ij




  jiijji RRRRRRKRRKRRKRRRR ,,,,1

22
0

33
1,,,, 8)(8)(4)(  

   })(2)(,,

33
1

44
0,,,,,,,, jijiijijji RRRRKRRKRRRRRRRR   

 (3.19)

 jiijjiijij
RRRRRR

R
,Q ,,,,,,3,33 4

1
)xξ( 




(3.20)

The expansions for traction kernels can be also developed using Eqs.(2.42), (2.47),

(2.52) and (2.56), as follows:

36

)x()xξ()xx()xx(
!

1
)xξ()xξ(

11 ,
1

 n,M
S

,M,T okk
S

kokoo
SS 








 






 (3.21)

)x()xξ()xx()xx(
!

1
)xξ()xξ(

11 ,3
1

33  n,M
S

,M,T okk
S

kokoo
SS 








 






 (3.22)

)x()xξ()xx()xx(
!

1
)xξ()xξ(

11 ,3
1

33  n,Q
S

,Q,T okk
S

kokoo
SS 








 






 (3.23)

)x()xξ()xx()xx(
!

1
)xξ()xξ(

11 ,33
1

3333  n,Q
S

,Q,T okk
S

kokoo
SS 








 






 (3.24)

3.4. Moments coefficients

For each collocation boundary point  in fast multi-pole procedure, the total

boundary (Γ) is divided into two zones; the near-field boundary (Γnf), and the far-field

boundary (Γff). Using the expansions mentioned in the previous section, the kernels

calculations in the far-field boundary are rapidly converged when only few terms of

the expansions are used. It has to be noted that these expansions cannot give the same

convergence for near-field elements; therefore, the direct calculations are then used.

Thus, using the expansion form for generalized displacement kernel given in Eq. (3.2)

for far-field boundaries, the integration of generalized displacement kernel given in

Eq. (2.6) can be decomposed into the following terms:






nf

)x()x()xξ()x()x()xξ(nfdt,Udt,U jijjij
















 

ff

11
)x()x()xξ()xx()xx(

!

1
)xξ(ff,

1

dt,U
S

,U jokkij
S

kokooij
SS 



(3.25)

Consider the far field boundary to have Nfar number of constant elements and

identifying the traction multi-pole moment coefficients for each element n of them as:






n

n
n
j

n
to dt)x()x(C (3.26)














n

SS n
n
jkoko

n
ktk dt

S
)x()x()xx()xx(

!

1
C

11
 (3.27)

Thus, Eq.(3.25) can be rewritten in the following form:

37






nf

)x()x()xξ()x()x()xξ(nfdt,Udt,U jijjij

 
















far

SS

N

n S

n
ktkokkij

n
tooij ,U,U

1 1
, 11

C)xξ(C)xξ(
 (3.28)

Similarly, by using the expansion forms for moment and shear kernels obtained from

Eqs.(3.9) to (3.12), the integration of traction kernels given in Eq.(2.6) can be

decomposed into the following terms:






nf

)x()x()xξ()x()x()xξ(nfdu,Tdu,T jijjij
















 

ff

11
)x()x()xξ()xx()xx(

!

1
)xξ(ff,

1

dun,M
S

,M okk
S

kokoo
SS  



 














 

ff

11
)x()x()xξ()xx()xx(

!

1
)xξ(ff,3

1
3 dun,M

S
,M okk

S
kokoo

SS  


 














 

ff

11
)x()x()xξ()xx()xx(

!

1
)xξ(ff3,3

1
3 dun,Q

S
,Q okk

S
kokoo

SS  


 














 

ff

11
)x()x()xξ()xx()xx(

!

1
)xξ(ff3,33

1
33 dun,Q

S
,Q okk

S
kokoo SS  



 (3.29)

For each element n, defining the following generalized displacement multi-pole

moment coefficients:






n

n
n
j

n
uo dun)x()x(C  (3.30)














n

SS n
n
jkoko

n
kuk dun

S
)x()x()xx()xx(

!

1
C

11  (3.31)

Hence, Eq. (3.29) can be rewritten in the following form:






nf

)x()x()xξ()x()x()xξ(nfdu,Tdu,T jijjij

38

 
















far

SS

N

n S

n
kukokk

n
uoo ,M,M

1 1
, 11

C)xξ(C)xξ(

 
















far

SS

N

n S

n
kukokk

n
uoo ,M,M

1 1
,33 11

C)xξ(C)xξ(

 
















far

SS

N

n S

n
kukokk

n
uoo ,Q,Q

1 1
,33 11

C)xξ(C)xξ(

 
















far

SS

N

n S

n
kukokk

n
uoo ,Q,Q

1 1
,3333 11

C)xξ(C)xξ( (3.32)

As it can be seen from the expanded integral forms in Eqs.(3.28) and (3.32),

the multi-pole moment coefficients are independent of the source point, . As a result,

these coefficients can be calculated only once for every iteration in the solution of the

problem, in which the boundary unknowns are obtained from the earlier cycle of

iterative solution. On the other hand, the evaluations of the near-field integrals are

carried out using the conventional direct BEM scheme [62], i.e. as in Eq. (2.6) and

(2.17).

In order to implement the FMM, a hierarchical tree of clusters (or cells) is

needed to be defined. For each collocation point, the far-field elements can be

partitioned into many cells, which belong to different levels. Then, the moment

coefficients at each element, C, (see Fig.(3.1)) are evaluated with respect to the cell

center on the lowest level (the so-called leaf). After that, a grouping of multi-pole

moment coefficients occurs from the center of leaves (as at point xo) progressively to

the center of higher level cell (as at point xp) which is known as moment to moment

coefficients , O, as can be seen in Fig.(3.2). Then, a direct evaluation for these

moment coefficients to the collocation point (local path L) is performed to complete

the equivalent summations for far-field kernel expansions. The whole process is then

called as “first shift” or Barnes and Huts’ scheme [38]. In the following sections, the

stages of moments grouping and moment to moment transferring will be discussed.

39

Fig. 3.1: Schematic diagram for the fast multi-pole far-field collocation.

Fig. 3.2: Schematic diagram for the fast multi-pole far-field collocation.

local: L

Field
Point (X)

C
ol

lo
ca

ti
o

n
P

oi
nt

 (
ξ)

(X0)

(X0)

40

3.5. Moments grouping

The expansion terms of the kernels (moments C) related to elements that are far

enough from the collocation point are grouped in such a way, that the corresponding

expansions can be carried out without losing accuracy [37]. The grouping starts from

the leaves, where only elements are grouped at their lowest cell center as shown in

Fig.(3.1). Consider the total number of elements in the leaves is Nl elements, and the

total number of cells (leaves) in this level are L, then Eqs.(3.28), and (3.32) can be

rewritten as follows:






nf

)x()x()xξ()x()x()xξ(nfdt,Udt,U jijjij

  




 










L

l S

m
ktk

N

m
okkij

m
to

N

m
oij S

l

S

l

,U,U
1 1 1

,
1

11

C)xξ(C)xξ(
 (3.33)






nf

)x()x()xξ()x()x()xξ(nfdu,Tdu,T jijjij

  




 










L

l S

m
kuk

N

m
okk

m
uo

N

m
o S

l

S

l

,M,M
1 1 1

,
1

11

C)xξ(C)xξ(

  




 










L

l S

m
kuk

N

m
okk

m
uo

N

m
o S

l

S

l

,M,M
1 1 1

,3
1

3 11

C)xξ(C)xξ(

  




 










L

l S

m
kuk

N

m
okk

m
uo

N

m
o S

l

S

l

,Q,Q
1 1 1

,3
1

3 11

C)xξ(C)xξ(

  




 










L

l S

m
kuk

N

m
okk

m
uo

N

m
o S

l

S

l

,Q,Q
1 1 1

,33
1

33 11
C)xξ(C)xξ(

(3.34)

Where m denotes the element number within the leaf cell, and l denotes the leaf

number.

3.6. Moment to moment transferring

In order to minimize calculation operations, the fast multi-pole tree is designed

so that the moment coefficients are obtained at higher levels. Therefore, for each

collocation point, the far-field boundary elements which belong to leaves (their

centers are at xo) will then be transformed at the higher level cells (their centers are at

41

xp) [37]. This process will be repeated for each two successive levels up to the highest

level. Transformation process is obtained by applying extra Taylor expansions at cell

centers of higher levels. Therefore, Eqs. (3.33, 3.34) will be modified to be written at

higher level as follows:






nf

)x()x()xξ()x()x()xξ(nfdt,Udt,U jijjij









  



  1 1
,

1
11

O)xξ(C)xξ(
S

c
ktk

N

c
pkkij

c
to

N

c
pij S

c

S

c

,U,U 
 (3.35)






nf

)x()x()xξ()x()x()xξ(nfdu,Tdu,T jijjij









  



  1 1
,

1
11

O)xξ(C)xξ(
S

c
kuk

N

c
pkk

c
uo

N

c
p S

c

S

c

,M,M 









  



  1 1
,3

1
3 11

O)xξ(C)xξ(
S

c
kuk

N

c
pkk

c
uo

N

c
p S

c

S

c

,M,M 









  



  1 1
,3

1
3 11

O)xξ(C)xξ(
S

c
kuk

N

c
pkk

c
uo

N

c
p S

c

S

c

,Q,Q 









  



  1 1
,33

1
33 11

O)xξ(C)xξ(
S

c
kuk

N

c
pkk

c
uo

N

c
p S

c

S

c

,Q,Q  (3.36)

where Nc is the number of cells at the higher levels that have the transferred moments

from the lower level of Nl elements. The moments to moment transfer coefficients c
tO

and c
uO at the higher level are given by [52]:

 

















l

SSSSS

N

m

m
tokpkp

s
m

ktkkp
m

ktk
c

ktk
S1

00o C)xx()xx(
!

1-
C)xx(CO

11111


 (3.37)

 















m
uokpkp

s
m

kukkp
m

kuk

N

m

c
kuk SSSS

l

S S
C)xx()xx(

!

1-
C)xx(CO 00o

1
11111


 (3.38)

42

It has to be noted that the infinite series in Eqs. (3.37) and (3.38) are truncated after a

certain number of terms to obtain the desired accuracy. As will be proven through

numerical examples in chapter (5), only up to three expanded terms (S=3) is enough to

obtain an adequate accuracy for original expanded functions.

3.7. Final collocation and matrix form

As illustrated before in the present algorithm, the fundamental solution kernels

for generalized displacements and tractions are calculated using two different parts:

the near-field element integrations (via the conventional direct BEM), and the far-field

element summations (via the FMM). If this process is repeated at every collocation

point on the boundary (i.e. N times), the resulted algorithm will reduce the

computational complexity from O(N3)to be O(N log N), and the corresponding

modified system of equations can be written as follows:

       far

N

near

N
near

NN

far

N

near

N
near

NN 131333131333][][  GttGHuuH (3.39)

where {Hu}far and {Gt}far are vectors denote an implicit evaluation of the matrix-

vector multiplication in the far-field regions; [H]{u}and [G]{t}respectively.

Reordering Eq. (3.39) for separating boundary unknowns (appears only at near fields)

from boundary known values added with other calculated vectors for far fields, the

following system of equations will be formed as:

   new

NN
new

NN 131333][  BxA (3.40)

It has to be noticed that the matrix [A]newin Eq. (3.40) is sparse. This advantage

facilitates the using of iterative solutions for the resulted system of matrices. Thus, Eq.

(3.40) is solved using any suitable iterative solver such as the GMRES [53]. In the

first iteration of solution, unknown boundary values in far-fields are set to zeros in

order to evaluate initial values of the {B}new vector. After solving the first iteration, the

values of {x}will be used to describe the values of boundary unknowns at far-fields

regions in the second iteration. The procedure is repeated until results of {x}

converges and reaches a prescribed tolerance.

43

3.8 Conclusions

In this chapter, the fast multi-pole expansion is applied to the boundary element method

for shear deformable plate bending problems, as the conventional BEM is not efficient

in solving large-scale problems containing large number of degrees of freedoms. In

such problems, the fast multi-pole method when accompanied with iterative solvers

(GMRES) has succeeded to substantially decrease the computational time to be O(N

log N) instead of O(N2). In next chapter, the FMM technique is implemented into

compute code to solve numerical problems.

44

Chapter 4: Programing for the proposed FMM

4.1. Introduction

In this chapter, the main structure of the proposed FMM code for solving plate

bending problems is introduced. This code is written in FORTRAN language and is

provided in Appendix (A).In this program; constant elements are employed to

approximate the line integrals. This FMM code for general plate bending problems

can be used as a basis to develop FMM programs 2nd shift and for using higher order

elements. Section 4.2, represents the program’s sequence and the main subroutines in

flowchart. In section 4.3, the purpose of each subroutine is explained.

4.2. Work flow process

 Figure 4.1. Flowchart for a FMM program.

Start the program,
Initiate parameters and call FMM

BEM (fmmmain subroutine)

Reading the input files by
(prep_model subroutine)

Divide the input geometry and
establish the tree structure by

(tree subroutine)

Calculate the R.H.S. of (�� = �)
and matrix (�) by (fmmbvector

subroutine)

upward subroutine

dwnwrd subroutine

moment subroutine

direct subroutine

Call GMRES solver by (dgmres
subroutine)

Print the results

Program End

msolve subroutine

matvec subroutine

upward subroutine

dwnwrd subroutine

M2P subroutine

45

The flowchart of this fast multi-pole BEM code is given in fig.(4.1). The chart shows

the main tasks and sequences for the program and the related subroutines. The

program for the fast multi-pole BEM is more complicated than the program of

conventional BEM because of the tree structure of the cells and various expansions.

With the restrictions of the GMRES solver, a large array is needed to be developed in

the program to pass the variables to the GMRES solver. A few important subroutines

in the program are discussed in the following subsections.

4.2.1 Subroutine fmmmain

The fmmmain subroutine starts with calling prep_model, which reads in the data for

the boundary nodes, elements, boundary conditions, and field (interior) points from

file input.dat(a sample file is given in Appendix (A.1)) and the additional parameters

used in the fast multi-pole expansions and solver GMRES from file input.fmm (a

sample file is given in Appendix(A.2)). It then generate the tree structure, computes

the right hand side {b} vector, solves the system of equation (Aλ = b) using the

GMRES solver, computes values at interior points, and finally print the results.

4.2.2 Subroutine tree

This subroutine is an essential piece of the entire code. By calling the subroutine tree,

the quad tree structure for the elements is created. The information of the tree

structure is stored in several arrays in the code. To understand how this subroutine is

used to create the tree structure, refer to the BEM model shown in fig.(4.2).

Cells in the tree structure are numbered in the following way: the largest cell at level 0

is called cell 1, the four cells at level 1 are numbered 2,3,4 and 5 respectively,

according to order 0,1,2,3 as shown in the side box in fig.(4.2). This operation is

continuing in this way to reach all the leaves (leaf is the cell which contains the

maximum number of nodes per cell and the maximum number of nodes per cell is

user input). This subroutine is automatically ignore all cells have no elements. The

model shown in fig.(4.2) consists of 30 nodes and each node refers to one constant

element and the numbering of cells according to tree structure can show in fig.(4.3).

46

Figure 4.2 A cell structure covering all the boundary elements.
Taken from Liu[37].

 Figure 4.3 Cell number for level 0, 1 and 2 for the model.

Taken from Liu[37].

47

The tree code sort the coordinates of each node in different arrays, the center of each

cell and the relation between cells like which cell is the leaf and which is the parent of

it and which is called neighbor of it. This relation between cells can be cleared in the

fig. (4.4).All arrays which filled by all this information are sort in a large array and

this operation is a step for preparing the information array to the iterative solver

GMRES.

Figure 4.4 The relation between cells in the tree structure.

Taken from Liu[37].

The tree subroutine is main subroutine which addresses the input data to use in the

FMM algorism.

4.2.3 Subroutine fmmbvector

The main purpose of fmmbvector subroutine is to compute the right hand side {B}

vector by using the fast multi-pole algorism. The right hand side is computed by

calling the upward subroutine and the dwnwrd subroutine. The calculation of the {B}

vector requires calculating the conventional BEM coefficient by using the FMM

algorism. By using the novel algorism in computing the right hand side can save the

CPU time and minimize the complexity of code from O(N2) in the conventional BEM

to O(N log N) when using the first shift in FMM algorism and O(N) when using the

48

second shift in FMM algorism. But with make the complexity of code lower, the use

of iterative solver (GMRES) is mandatory.

4.2.4 Subroutine dgmres

The dgmres subroutine is the GMRES solver in the SLATEC package from

www.netlib.org. It is not required to understand the inner workings of this GMRES

iterative solver to apply this subroutine. To use this GMRES solver, only two

subroutines are needed to be prepared: msolve and matvec, which are two external

subroutines for dgmres [37].

4.2.5 Subroutine msolve

 This subroutine is called by dgmres subroutine to prepare the preconditioning

matrix that will be used by GMRES solver. The preconditioning matrix is calculated

once in the first iteration and the diagonal block matrix stored in the rwork array and

the related information like size and the location of diagonal block is stored in the

iwork array.

4.2.6 Subroutine matvec

 The matvec subroutine is providing the algorism for the matrix vector

multiplication using the fast multi-pole algorisms by simply calling the upward and

dwnwrd subroutines using the values for the solution vector from the previous

iteration [37].

4.2.7 Subroutine upward

 The upward subroutine is calculating the moment expansion in each leaf (the

cell which has the maximum number of node defined by user) in the tree structure by

calling moment subroutine and grouping all these moments by moment to moment

expansion and climbing to the parent cell in the higher level and so on to reach level 2

in the tree and store these calculations in [a] matrix.

4.2.8 Subroutine dwnwrd

The dwnwrd subroutine is calculating the coefficient of [G] and [H] kernels. These

calculations achieved by two ways in this subroutine depend on the position of cells.

49

For near cells, calculation achieved typically as the conventional BEM by calling

direct subroutine. For far cells, the coefficient calculated by using the FMM

expansions by calling M2P subroutine when using the first shift which use the values

in [a] matrix in M2P expansion to get the coefficient which stored in [b] matrix.

4.3 Conclusions

In this chapter, the FORTRAN code of the fast multi-pole method was discussed. The

operation scheme of the main program was illustrated. Also, the input and output data

of each subroutine were explained. The FORTRAN code, its input files and output

files are presented in Appendix (A). In the next chapter, the developed program is

investigated through some numerical examples in order to test the validity of the

proposed FMM against analytical solutions, and conventional BEM solutions.

50

Chapter 5: Numerical Examples

5.1 Introduction

In this chapter, two different examples with different boundary conditions are

selected to demonstrate the accuracy and efficiency of the proposed fast multi-pole

formulation. As mentioned before, Taylor expansions using any number of terms

could be used, however numerical results proved that up to three terms are enough to

obtain results with excellent accuracy. In all problems, the platform for obtaining the

present results is a 2.0-GHz Intel® Pentium® Core2Due with 2 GB RAM.

5.2 Cantilever plate

 The (20m5m) rectangular cantilever plate shown in Fig.(5.1) is considered.

The cantilever has thickness of 0.3 m and is fixed along one of its short sides. It is

loaded by edge loading of intensity 1.5 t/m as shown in Fig.(5.1). The used material

properties are: The Young’s modulus E = 3.0×107 t/m2, and the Poisson’s ratio is set

to zero to allow comparison against the analytical solutions of the beam theory. The

problem boundary is discretized into many meshes vary from 100 to 1000 constant

elements. The results for the generalized displacements at point (A) are evaluated

using analytical solution and also obtained from the conventional direct boundary

element method as well as obtained from the proposed FMM. The comparison

between all results for rotation and deflection are presented in Table (5.1).From Table

(5.1), it can be seen that the rotation and deflections values solved by the proposed

FMM using 2 or 3 terms are in excellent agreement with those obtained from the

conventional BEM. Both results agree with the analytical solutions for all studied

cases which illustrate the accuracy of the proposed FMM technique.

In order to demonstrate the strength of the proposed FMM, a comparison is

carried out between the conventional BEM and the fast multi-pole BEM using 2 and 3

terms. In this comparison, the CPU time needed to solve problems having different

boundary element discretization is computed. The comparison is plotted in Fig.(5.2).

As it can be seen from the Fig.(5.2), a substantial saving of elapsed time is achieved

51

when the problem is solved by the proposed FMM, whether the selected terms are 2 or

3. As the number of elements of the problem increases, the proposed FMM is much

more efficient compared to the conventional BEM, which enables the boundary

element method to be used in solving large-scale practical plate bending problems.

Fig. 5.1: The considered cantilever plate.

Fig. 5.2: Comparison of CPU time between the proposed FMM and the conventional
BEM for the cantilever plate.

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050

T
im

e
(s

ec
)

Numbers of elements

FMM (2Terms)

FMM (3Terms)

Conventional BEM

52

Table (5. 1): Results of rotation and deflection of point (A) in the cantilever plate.

Numbers
 of

elements
Mesh

Analytical
solution

(rotation)

Proposed FMM (rotation) Conventional
BEM (rotation)

Analytical
solution

(deflection)

Proposed FMM (deflection) Conventional
BEM (deflection)

2-terms 3-terms 2-terms 3-terms

50 20x5

0.004444

0.004244 0.004358 0.004414

-0.059259

-0.060112 -0.059364 -0.059837

100 40x10 0.004337 0.004448 0.004489 -0.060460 -0.059713 -0.060066

120 50x10 0.004334 0.004444 0.004492 -0.060265 -0.059559 -0.059969

140 50x20 0.004344 0.004454 0.004502 -0.060395 -0.059694 -0.060106

174 62x25 0.004386 0.004495 0.004537 -0.060766 -0.060070 -0.060431

200 80x20 0.004338 0.004445 0.004491 -0.060153 -0.059443 -0.059837

250 100x25 0.004328 0.004437 0.004484 -0.060021 -0.059330 -0.059738

300 100x50 0.004334 0.004443 0.004491 -0.060078 -0.059395 -0.059804

366 133x50 0.004338 0.004444 0.004491 -0.060089 -0.059382 -0.059780

500 200x50 0.004345 0.004421 0.004465 -0.059777 -0.059117 -0.059497

666 267x66 0.004317 0.004424 0.004469 -0.059852 -0.059148 -0.059535

1000 400x100 0.004303 0.004381 0.004429 -0.059701 -0.058957 -0.059349

53

5.3 Slab with circular opening

The square slab of side length 6m shown in Fig.(5.3) is considered in this

example. The slab is fixed along two opposite sides whereas the other two sides are

free and loaded with line load of 10 t/m and line moments of 30 t.m/m. The slab is

also having a circular opening on which a line load of 5 t/m is applied as shown in

Fig.(5.3). The slab thickness is 0.35 m and its material properties are: E = 2.5×106

t/m2, = 0.2. Only one quarter of the slab is solved due to problem symmetry. The

problem boundary is discretized into several number of boundary elements vary from

100 to 1000 elements.

Table (5.2) and Table (5.3) demonstrate a comparison for generalized

displacements results (rotations about two directions and deflection) at points (A) and

(B) respectively. The values obtained based on the proposed FMM are compared

against those of conventional BEM. As it can be seen from the results, the proposed

FMM achieved accurate evaluation of boundary values against conventional

numerical method when expanding the kernel series with only three terms. On the

other side, Fig.(5.3) demonstrates the elapsed CPU times for both conventional BEM

and the proposed FMM. The figure illustrate that the time needed to solve the problem

using the proposed FMM with 2 or 3 terms are extremely small when compared with

the time consumed using the conventional BEM. This difference can be easily

observed for large problems with large number of boundary elements which appear in

case of practical applications.

54

 Fig. 5.3: The considered squared slab with circular opening.

(A)

6 m

6
m

10 t/m

30 t.m/m

5 t/m

10 t/m

30 t.m/m

1.5 m

R= 2
m

(B)

55

Table (5. 2): Generalized displacements of point (A) in the squared slab.

Number
 of

elements

Proposed FMM
(U1) Conventional

BEM (U1)

Proposed FMM
(U2) Conventional

BEM (U2)

Proposed FMM
(U3) Conventional

BEM (U3)

2-terms 3-terms 2-terms 3-terms 2-terms 3-terms

86 -0.00003961 -0.00003154 -0.00003162 -0.00001733 0.00008584 0.00009074 -0.00044045 -0.00043475 -0.00043585

218 -0.00004200 -0.00003544 -0.00003451 -0.00001798 0.00004310 0.00008901 -0.00043752 -0.00041660 -0.00043448

490 0.00000689 -0.00002275 -0.00002380 0.00003331 0.00008437 0.00008710 -0.00045897 -0.00044716 -0.00044749

590 0.00001164 -0.00002233 -0.00002336 0.00004306 0.00008469 0.00008692 -0.00045934 -0.00044770 -0.00044794

818 0.00002021 -0.00002141 -0.00002336 0.00005820 0.00008470 0.00008692 -0.00046043 -0.00044770 -0.00044794

980 0.00001998 -0.00002163 -0.00002272 0.00005846 0.00008486 0.00008666 0.00005846 -0.00044853 -0.00044863

Table (5. 3): Generalized displacements of point (B) in the squared slab.

Number
 of

elements

Proposed FMM
(U1) ×10-5 rad Conventional

BEM (U1)

Proposed FMM
(U2) ×10-3 rad Conventional

BEM (U2)

Proposed FMM
(U3) Conventional

BEM (U3)

2-terms 3-terms 2-terms 3-terms 2-terms 3-terms

86 -3.96074600 -3.15374270 -3.16187550 -1.73349710 8.58433060 9.07424320 -44.04462800 -43.47479000 -43.58481500

218 -4.19958380 -3.54390100 -3.45054030 -1.79759840 4.30957740 8.90142320 -43.75170900 -41.66021200 -43.44762000

490 0.68921429 -2.27532660 -2.38010790 3.33125430 8.43742790 8.70958820 -45.89665900 -44.71621500 -44.74934500

590 1.16381970 -2.23265740 -2.33645760 4.30606170 8.46881390 8.69158620 -45.93357100 -44.77021100 -44.79433100

818 2.02115950 -2.14077300 -2.33645760 5.81962910 8.47017120 8.69158620 -46.04255200 -44.77021100 -44.79433100

980 1.99768990 -2.16299760 -2.27172010 5.84576820 8.48626480 8.66572580 5.84576820 -44.85285400 -44.86254500

56

Fig. 5.4: Comparison of CPU time between the proposed FMM and the conventional
BEM for the squared slab.

5.4 Conclusions

This chapter discussed, in a practical way, the benefits of applying FMM technique to
conventional BEM equations. Results in tables prove that the solution accuracy was
not affected by introduction of FMM. Charts prove that FMM technique leads to faster
computation than conventional BEM.

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050

T
im

e
(s

ec
)

Numbers of elements

FMM (2Terms)

FMM (3Terms)

Conventional BEM

57

Chapter 6: Summary and Conclusions

6.1 Summary

 In this thesis, the fast multi-pole expansion technique was applied to the

boundary element method for shear deformable plate bending problems. As the

conventional method is suitable for medium problems with simple geometry but it is

not efficient in solving large-scale problems containing large number of degrees of

freedoms. In such problems, the fast multi-pole method when accompanied with

iterative solvers (GMRES) had succeeded to substantially decrease the computational

time. To validate the proposed formulation, two numerical examples with different

boundary conditions were presented. A comparison of the computational time and

results accuracy of the proposed FMM against analytical and conventional BEM

solutions were carried out. As illustrated in these numerical tests, only few expansion

terms (three terms) were needed to obtain results with high accuracy.

6.2 Conclusions

 The main idea of the fast multi-pole BEM is to replace the element to element

interactions, which are costly to compute, with cell to cell interactions through the

introduction of the fast multi-pole expansions of the fundamental solution kernels.

Thus, in the proposed application of FMM technique the number of collocation

operations is reduced. In addition, when the fast multi-pole technique is applied to the

conventional BEM, the coefficient matrix is changed from fully populated matrix to

sparse matrix with band width related to the number of nodes per leaf cell. This

change enables to minimize the complexity and also saving the CPU time and

memory. Application of FMM technique to direct boundary element solution of plates

proved to preserve the boundary elements accuracy with improved solution time. This

application opens the way for application of parallel programming to BEM.

58

6.3 Future work

 The proposed method is promising -when extended- to open the way for

solution of large-scale practical problems. In order to achieve more in this research

trend, a future work considering the fast multi-pole local expansions -which is known

as “second shift”- besides upgrading the boundary elements to be quadratic and add

the contribution of domain loads and internal stiffness conditions are suggested to be

investigated. Also, the representation of the problem with quadratic elements instead

of constant elements will be more accurate and can be one of the future work points.

The precondition sparse matrix give a chance to use multi thread programing or GPU

programing to save more time and print the result of large scale problem in no time.

The fast multi-pole algorism can apply in any method using mesh to simulate its

problem like finite element method.

59

REFERENCES

[1] Bathe K.J., (1982), "Finite Element Procedure in Engineering Analysis", Englewood

Cliffs, NJ, Prentice-Hall.

[2] SAP2000 V10, 2004, Structural Analysis Program Software, Integrated Finite

Element Analysis and Design of Structures, Computer and Structures, Inc., University

Aveneu, Berkeley, California.

[3] Rizzo, F., Some integral equation methods for plane problems of classical

elastostatics.1964, University of Illinois, Urbana-Champaign. p. 34.

[4] Rizzo, F., An integral equation approach to boundary value problems of classical

elastostatics. Q. Appl. Math. , Vol. 25 :pp.83-95, 1967

[5] Bush, M.B. and R.I. Tanner, Numerical solution of viscous flows using integral

equation methods. Int. J. Num. Methods in Fluids, Vol. 3: pp.71–92, 1983

[6] Coleman, C.J., On the use of boundary integral methods in the analysis of non-

Newtonian fluid flow. J. Non-Newt. Fluid Mech., Vol. 16: pp347–355, 1984.

[7] Chen, L. and D. Schweikert, Sound radiation from an arbitrary body. J. Acoust. Soc.

Am., Vol. 35: pp1626–1632, 1963.

[8] Waterman, P.C., New formulation of acoustic scattering. J. Acoust. Soc. Am., Vol. 45:

pp1417-1429, 1969.

[9] Cruse, T.A., BIE fracture mechanics analysis: 25 years of developments.

Computational Mechanics, Vol. 18(1): pp1-11, 1996.

[10] Banerjee, P.K., D.N. Cathie, and T.G. Davies, Two and three-dimensional problems

of elastoplasticity, in Deueloprnents in Boundary Elements, P.K. Banerjee and R.

Butterfield, Editors. 1979.

[11] Jawson, M.A. and G.T. Symm, Integral equation methods in potential theory- I, II.

Proc.Royal Soc., Vol. 275A: pp23-46, 1963.

[12] Banerjee, P.K. and R. Butterfield, Boundary element method in geomechanics, in

Finite element in geomechanics, G. G., Editor. 1977, Wiley: New York. p. 529-70.

[13] Chertock, G., Sound radiation from vibrating surfaces. J. Acoust. Soc. Am., Vol. 36:

pp1305-1313, 1964.

[14] Copley, L.G., Integral equation method for radiation from vibrating bodies. J. Acoust.

Soc. Am., Vol. 41: pp807-810, 1967.

60

[15] Copley, L.G., Fundamental Results Concerning Integral Representations in Acoustic

Radiation. The Journal of the Acoustical Society of America, Vol. 44(1): pp28-32,

1968.

[16] Schenck, H.A., Improved integral formulation for acoustic radiation problems. J.

Acoust. Soc. Am., Vol. 44: pp41-58, 1968.

[17] Burton, A.J. and G.F. Miller. The application of the integral equation methods to the

numerical solution of some exterior boundary-value problems. in Proceedings of the

royal society of London, Serious A, Mathemtaic and physical sciences. 1971.

[18] Kost, A. and J. Shen, Parallel computation of 3-D nonlinear eddy currents by the

Boundary Element Method (BEM) and the Fast Fourier Transform (FFT). COMPEL,

1990. 9, Supplement A: p. 181-184.

[19] Valente, F.P. and H.L. Pina, Iterative techniques for 3-D boundary element method

systems of equations. Engineering Analysis with Boundary Elements, Vol. 25(6):

pp423-429, 2001.

[20] Nabors, K., et al., Preconditioned, adaptive, multipole-accelerated iterative methods

for three-dimensional first-kind integral equations of potential theory. SIAM J.

ScI.COMPUT., Vol. 15(3): pp713-735, 1994.

[21] Rokhlin, V., A fast algorithm for the discrete Laplace transformation. Journal of

Complexity, Vol. 4(1): pp12-32, 1988.

[22] Greengard, L. and V. Rokhlin, A fast algorithm for particle simulations. Journal of

Computational Physics, Vol. 73: pp325-348, 1987.

[23] Seybert, A.F. and T.W. Wu, Modified Helmholtz integral equation for bodies sitting on

an infinite plane. J. Acoust. Soc. Am., Vol. 85(1): pp19-23, 1989.

[24] Swedlow, J. and T. Cruse, Formulation of boundary integral equations for three

dimensional elasto-plastic flow. Int J Solids Struct Vol. 7: pp1673-1683, 1971.

[25] Sirtori, S., General stress anlaysis method by means of integral equations and

boundary elements. Meccanica, Vol. 14: pp210-218, 1979.

[26] Mansur, W.J., A time-stepping technique to solve wave propagation problems using

the boundary element method. 1983, University of Southampton, England.

[27] Kim, G.-T. and B.-H. Lee, 3-D sound source reconstruction and field reprediction

using the Helmholtz integral equation. Journal of Sound and Vibration, Vol. 136:

pp245-261, 1990.

[28] Banerjee, P.K., S. Ahmad, and H.C. Wang, A new BEM formulation for the acoustic

eigenfrequency analysis. Int. J. Num. Meth. Eng., Vol. 26: pp1299-1309, 1988.

61

[29] Karabalis, D.L. and D.E. Beskos, Dynamic response of 3-D flexible foundations by

time domain BEM and FEM. Soil Dyn. Earthquake Eng., Vol. 4: pp91-101, 1985.

[30] Dumont, N., The hybrid boundary element method, in Boundary Elements IX. 1987,

Springer: Berlin. p. 117-130.

[31] Guiggiani, M., Formulation and numerical treatment of boundary integral equations

with hypersingular kernels, in Singular Integrals in Boundary Element Methods, V.

Sladekand J. Sladek, Editors. 1998, Computational Mechanics Publishers.

[32] Krishnasamy, G.L., et al., Hypersingular boundary integral equations: Some

applications in acoustic and elastic wave scattering. J. Appl. Mech. , Vol. 57: pp404-

414, 1990.

[33] Liu, Y.J. and F.J. Rizzo, A weakly singular form of the hypersingular boundary

integral equation applied to 3D acoustic wave problems. Comput. Methods Appl.

Mech. Engrg., Vol. 96: pp271-287, 1992.

[34] Yang, S.A., Evaluation of 2D Green's boundary formula and its normal derivative

using Legendre polynomials, with an application to acoustic scattering problems. Int.

J.Numer. Methods Eng., Vol. 53: pp905-927, 2002.

[35] Meyer, W.L., W.A. Bell, and B.T. Zinn, Boundary integral solutions of three

dimensional acoustic radiation problems. Journal of Sound and Vibration, Vol. 59(2):

pp245-262, 1978.

[36] Crosbie, A.L. and R.G. Schrenker, Radiative transfer in a two-dimensional

rectangular medium exposed to diffuse radiation. J. Quant. Spectrosc. Radiat.Transf.,

Vol. 31: pp339-372, 1984.

[37] Liu YJ . Fast multipole boundary element method: theory and applications in

engineering. Cambridge University Press, New York, 2009.

[38] Barnes J, Hut P. A hierarchical O(N log N) force calculation algorithm, Nature, Vol.

324: pp. 446-449, 1986.

[39] Greengrad L, Rokhlin V. A fast algorithm for particle simulations, J Comput. Phys,

Vol. 135: pp. 280-292, 1997.

[40] Rokhlin V. Rapid solution of integral equations of classical potential theory. J

ComputPhys, Vol. 60: pp.187–207, 1985.

[41] Mansur WJ, Araujo FC, Malachini JEB. Solution of BEM systems of equations via

iterative techniques. Int J Numer Meth Engng, Vol. 33: pp. 1823–41, 1992.

62

[42] Urekew TJ, Rencis J. The importance of diagonal dominance in the iterative solution

of equations generated from the boundary element method, Int J Numer Meth Engng,

Vol. 36: pp. 3509–27, 1993.

[43] Prasad KG, Kane JH, Keyes DE, Balakrishna C. Preconditioned Krylov solvers for

BEA. Int J Numer Meth Engng, Vol. 37: pp. 1651–72, 1994.

[44] Bulgakov VE, Bialecki RA, Kuhn G. Coarse division transform based preconditioner

for boundary element problems, Int J Numer Meth Engng, Vol. 38: pp. 2115– 29,

1995.

[45] Hribersek M, Skerget L. Iterative methods in solving Navier–Stokes equations by the

boundary element method. Int J Numer Meth Engng, Vol. 39: pp.115 –39, 1996.

[46] Zejun Chen, Hong Xiao. The fast multipole boundary element methods (FMBEM) and

its applications in rolling engineering analysis, ComputMech, Vol. 50: pp. 513–531,

2012.

[47] Fu Y, Klimkowski KJ, Rodin IGJ, Beger E, Browne JC, Singer JK, Van de Geijn RA,

Vemaganti KS. A fast solution method for three-dimensional many particle problems

of linear elasticity, Int J Numer Meth Engng, Vol. 42: pp.1215–1229, 1998.

[48] Hayami K, Sauter SA. Panel clustering for 3-D elastostatics using spherical

harmonics, In: Kassab A, Brebbia CA, Chopra M, editors. Proceedings of Boundary

Elements XX. Southampton, UK: Computational Mechanics Publications; 1998.

[49] Peirce AP, Napier JAL. A spectral multipole method for efficient solution of large

scale boundary element models in elastostaics, Int J Numer Meth Engng, Vol. 38: pp.

4009–34, 1995.

[50] Hayami K, Sauter SA. Cost estimation of the panel clustering method applied to 3-D

elastostatics, In: Brebbia CA, editor. Proceedings of the Second European Boundary

Element Method Symposium, EUROBEM 98. Southampton, UK: Computational

Mechanics Publications; 1998.

[51] Popov V, Power H. An O(N) Taylor series multipole boundary element method for

three-dimensional elasticity problems, Engng Anal Bound Elem, Vol.25, pp. 7–18,

2001.

[52] Gomez JE, Power H. A multipole direct and indirect BEM for 2D cavity flow at low

Reynolds number, Engng Anal Bound Elem, Vol. 19: pp.17–31, 1997.

[53] Saad Y, Schultz M. GMRES: a generalized minimal residual algorithm for solving

nonsymmetric linear systems, SIAM J Sci Stat Comput, Vol. 7(3): pp. 856–869, 1986.

63

[54] Xiao H, Chen ZJ. Numerical experiments of preconditioned Krylov subspace methods

solving the dense nonsymmetric systems arising from BEM, Engng Anal Bound Elem,

Vol. 31(12): pp.1013–1023, 2007.

[55] Beskos DE, editor, Boundary Element analysis of plates and shells, Berlin, Springer-

Verlag, 1991.

[56] Bézine, G. Boundary integral formulation for plate flexure with arbitrary boundary

conditions, Mech Res Comm, Vol. 5: pp. 197-206, 1978.

[57] Stern, M. A general boundary integral formulation for the numerical solution of plate

bending problems, Int J Solids Struct, Vol. 15: pp. 769-782, 1979.

[58] Vander Weeën F. Application of the boundary integral equation method to Reissner's

plate model, Int J Num Meth in Eng, Vol. 18: pp. 1-10, 1982.

[59] Reissner, E. The effect of transverse shear deformation on bending of elastic plates, J

App Math, Vol. 12: pp. A69-A77, 1945.

[60] Hörmander, L., Linear Partial Differential Operators, Springer-Verlag, Berlin, 1963.

[61] Abramowitz M, Stegun, IA., eds., Handbook of mathematical functions with formulas,

graphs, and mathematical tables, 9th printing, Dover, New York, 1972.

[62] Karam V, Telles JCF. On boundary elements for Reissner’s plate theory. Engng Anal

Bound Elem, Vol. 5: pp21–27, 1988.

64

APPENDIX A

Sample computer program

A.1 A fortran code of the fast multi-pole method for plate bending problems.

The following is a list of the source code written in the FORTRAN for the

program discussed in section 4.2for plate bending problems using the fast multi-pole

BEM.

c Program:Plate_Bending_FMM-Afast multi-pole boundary element

c Method(BEM)code for analyzing large-scale,general

c Plate Bending problems using constant elements.

 Program Plate_Bending

c implicit real*8 (a-h,o-z)

 IMPLICIT DOUBLE PRECISION (A-H)

 IMPLICIT DOUBLE PRECISION (O-Z)

 integer, allocatable ::ia(:)

 complex*16, allocatable ::am(:)

C== Note that AUU=(no., of ele,no. , of cells ,no.,of terms in equations)

 DOUBLE PRECISION, DIMENSION (3500,16,135)::AUU !max @ 5 terms of auu=279

 DOUBLE PRECISION, DIMENSION (3500,16,180)::AMM !max @ 5 terms of amm=372

 DOUBLE PRECISION, DIMENSION (3500,16,90)::AQQ !max @ 5 terms of aqq=186

 DOUBLE PRECISION, DIMENSION (30000)::coG

 DOUBLE PRECISION, DIMENSION (30000)::coH

 character*80 Prob_Title

 COMMON/MATRIX/AUU,AMM,AQQ

 COMMON/GHdirect/coG,coH

 COMMON/BASICBLOCK/ T,XNU,E,NSUB

 COMMON/BASICLOAD/ QLOAD

 COMMON/FILEBLOCK/ Specr1,Specr2

 QLOAD=0.d0

 Specr1=0.d0 ; Specr2=0.d0

 call CPU_Time(time0)

c ==

 open (4,file='input.fmm',status='old')

65

 open (5,file='input.dat',status='old')

 open (3,file='output.dat',status='unknown')

c open (7,file='phi_boundary.plt',status='unknown')

c open (8,file='xy.plt', status='unknown')

c open (9,file='phi_domain.plt',status='unknown')

c open (11,file='to_solve.plt',status='unknown')

c open (12,file='MAINMATRIX.plt',status='unknown')

c OPEN (13,FILE='GOUT.XLS')

c open (15,file='to_print.plt',status='unknown')

c Input the parameters

 read(4,*) maxl, levmx, nexp, ntylr, tolerance

 read(4,*) maxia, ncellmx, nleafmx, mxl, nwksz

 read(4,*) maxt

 read(5,'(a80)') Prob_Title

 read(5,*) T,XNU,E,NSUB,n,nfield,Qload

 write(3,'(a80)') Prob_Title

 write(*,'(a80)') Prob_Title

c Estimate the maximum numbers of the cells and leaves,

c and size of the preconditioning matrix,etc.

 if(ncellmx.le.0)ncellmx = max(4*n/maxl,100)

 if(nleafmx.le.0)nleafmx = max(ncellmx/2,100)

 if(nwksz.le.0)nwksz = maxl*maxl*nleafmx

 ligw = 3*n

 lrgw = 1+3*n*(mxl+6)+mxl*(mxl+3)

 iwksz = 3*n+3*nleafmx+1

 allocate (ia(maxia))

c Load the addresses (pointers) associated with the locations of the

c variables to be stored in the large array"am"

 call lpointer(lp,ln,maxia,ia,n,nexp,maxt,ntylr,ncellmx,

 & levmx,ligw,lrgw,nwksz,iwksz,nfield,

 & l_n,l_x,l_y,l_node,l_dnorm,

 & l_bc,l_a,l_b,l_xmax,

 & l_xmin,l_ymax,l_ymin,l_ielem,l_itree,

 & l_level,l_loct,l_numt,l_ifath,l_lowlev,

 & l_maxl,l_levmx,l_nexp,l_ntylr,l_tolerance,

 & l_ncellmx,l_nleafmx,l_mxl,l_u,l_ax,

 & l_sb,l_sx,l_ligw,l_lrgw,l_igwk,

 & l_rgwk,l_nwksz,l_iwksz,l_rwork,l_iwork,

 & l_xfield,l_nfield,l_f,l_maxt)

66

c Estimate the memory usage

 maxa = lp

 write(3,100) maxa*16/1.D6

 write(*,100) maxa*16/1.D6

 100 format(' Memory size of the large block am =',f12.1, 'Mb'/)

c Allocate the large block 'am'

 allocate (am(maxa))

c Assign the parameters to the array am()

 call assigni(n, am(l_n))

 call assigni(maxl, am(l_maxl))

 call assigni(levmx, am(l_levmx))

 call assigni(nexp, am(l_nexp))

 call assigni(maxt, am(l_maxt))

 call assigni(ntylr, am(l_ntylr))

 call assignd(tolerance, am(l_tolerance))

 call assigni(ncellmx, am(l_ncellmx))

 call assigni(nleafmx, am(l_nleafmx))

 call assigni(mxl, am(l_mxl))

 call assigni(ligw, am(l_ligw))

 call assigni(lrgw, am(l_lrgw))

 call assigni(nwksz, am(l_nwksz))

 call assigni(iwksz, am(l_iwksz))

 call assigni(nfield, am(l_nfield))

c Call the FMM BEM main program

 call fmmmain(maxa,maxia,am,ia,

 & am(l_n),am(l_x),am(l_y),am(l_node),

 & am(l_dnorm),am(l_bc),am(l_a),am(l_b),

 & am(l_xmax),am(l_xmin),am(l_ymax),am(l_ymin),

 & am(l_ielem),am(l_itree),am(l_level),am(l_loct),

 & am(l_numt),am(l_ifath),am(l_lowlev),am(l_maxl),

 & am(l_levmx),am(l_nexp),am(l_ntylr),am(l_tolerance),

 & am(l_ncellmx),am(l_nleafmx),am(l_mxl),am(l_u),

 & am(l_ax),am(l_nfield),am(l_xfield),am(l_f),

 & am(l_sb),am(l_sx),am(l_igwk),am(l_rgwk),

 & am(l_ligw),am(l_lrgw),am(l_nwksz),am(l_iwksz),

 & am(l_rwork),am(l_iwork),am(l_maxt))

c Estimate the total CPU time

 call CPU_Time(time)

 write(3,*)

 write(*,*)

67

 write(3,20) time-time0 !'Total CPU time used =',time-time0,'(sec)'

 write(*,20) time-time0 !'Total CPU time used =',time-time0,'(sec)'

 20 format(' Total CPU time used =',(f12.3),'(sec)')

 stop

 end

c Definition of Variables:

c

c maxa = maximum size of the array am

c maxia = maximum number of variables allowed

c am = a large array storing the variables for the SLATEC GMRES solver

c ia = an array storing the locations of the variables in the array am

c

c n = number of elements(= number of nodes)

c x = coordinates of the nodes

c y = coordinates of the endpoints ofthe elements

c node = element connectivity

c dnorm = normal at each node

c bc = BC type and value

c

c a = multipoleexpansionmoments

c b = local expansion coefficients

c xmax,xmin = maximum and minimum x coordinate

c ymax,ymin = maximum and minimum y coordinate

c ielem = ielem(i) gives the original element number for i-the element in

c the quad-tree structure

c itree = itree(c)givesthecelllocationofc-thcellwithineach

c tree level

c loct = elements included in the c-the cell are listed starting at

c the loct(c)-the place in the array ielem

c numt = numt(c)givesthenumberofelementsincludedinthec-thcell

c ifath = ifath(c)givesthenumberoftheparentcellofthec-thcell

c level = levellcellsstartatthelevel(l)-thcellinthetree

c lowlev = numberofthetreelevels

c

c maxl = maximum number of elements allowed in aleaf

c levmx = maximum number of levels allowed in the tree structure

c nexp = number of terms in multipole expansion

c ntylr = number of terms in local expansion

c tolerance = GMRES solution convergence tolerance

c ncellmx = maximum number of cells allowed in the tree

68

c nleafmx = maximum number of leaves allowed in the tree

c mxl = maximumdimensionofKrylovsubspace(usedinGMRES)

c

c u = firststoresbvector;thensolutionvectorofsystemAx = b

c ax = resultingvectorofmultiplicationAx

c nfield = number of the field points inside the domain

c xfield = coordinates of the field points inside the domain

c f = valuesofthepotentialatthefieldpointsinsidethedomain

c

c The following variables and arrays are used in the SLATEC GMRES solver:

c sb,sx,igwk,rgwk,ligw,lrgw,nwksz,iwksz,rwork,iwork

 subroutine lpointer(lp,ln,maxia,ia,n,nexp,maxt,ntylr,ncellmx,

 & levmx,ligw,lrgw,nwksz,iwksz,nfield,

 & l_n,l_x,l_y,l_node,l_dnorm,

 & l_bc,l_a,l_b,l_xmax,

 & l_xmin,l_ymax,l_ymin,l_ielem,l_itree,

 & l_level,l_loct,l_numt,l_ifath,l_lowlev,

 & l_maxl,l_levmx,l_nexp,l_ntylr,l_tolerance,

 & l_ncellmx,l_nleafmx,l_mxl,l_u,l_ax,

 & l_sb,l_sx,l_ligw,l_lrgw,l_igwk,

 & l_rgwk,l_nwksz,l_iwksz,l_rwork,l_iwork,

 & l_xfield,l_nfield,l_f,l_maxt)

 dimension ia(maxia)

 lp = 1

 l_n = l_address(1,maxia,ia,lp,4,1)

 l_x = l_address(2,maxia,ia,lp,8,n*2)

 l_y = l_address(3,maxia,ia,lp,8,n*2)

 l_node = l_address(4,maxia,ia,lp,4,n*2)

 l_dnorm = l_address(5,maxia,ia,lp,8,n*2)

 l_bc = l_address(6,maxia,ia,lp,8,n*2*3) !i change *3

 l_a = l_address(7,maxia,ia,lp,16,(nexp+1)*ncellmx)

 l_b = l_address(8,maxia,ia,lp,16,(ntylr+1)*ncellmx)

 l_xmax = l_address(9,maxia,ia,lp,8,1)

 l_xmin = l_address(10,maxia,ia,lp,8,1)

 l_ymax = l_address(11,maxia,ia,lp,8,1)

 l_ymin = l_address(12,maxia,ia,lp,8,1)

 l_ielem = l_address(13,maxia,ia,lp,4,n)

 l_itree = l_address(14,maxia,ia,lp,4,ncellmx)

 l_level = l_address(15,maxia,ia,lp,4,levmx+1)

69

 l_loct = l_address(16,maxia,ia,lp,4,ncellmx)

 l_numt = l_address(17,maxia,ia,lp,4,ncellmx)

 l_ifath = l_address(18,maxia,ia,lp,4,ncellmx)

 l_lowlev = l_address(19,maxia,ia,lp,4,1)

 l_maxl = l_address(20,maxia,ia,lp,4,1)

 l_levmx = l_address(21,maxia,ia,lp,4,1)

 l_nexp = l_address(22,maxia,ia,lp,4,1)

 l_ntylr = l_address(23,maxia,ia,lp,4,1)

 l_tolerance = l_address(24,maxia,ia,lp,8,1)

 l_ncellmx = l_address(25,maxia,ia,lp,4,1)

 l_nleafmx = l_address(26,maxia,ia,lp,4,1)

 l_mxl = l_address(27,maxia,ia,lp,4,1)

 l_u = l_address(28,maxia,ia,lp,8,n*3) !i change *3

 l_ax = l_address(29,maxia,ia,lp,8,n*3) !i change *3

 l_sb = l_address(30,maxia,ia,lp,8,n)

 l_sx = l_address(31,maxia,ia,lp,8,n)

 l_ligw = l_address(32,maxia,ia,lp,4,1)

 l_lrgw = l_address(33,maxia,ia,lp,4,1)

 l_igwk = l_address(34,maxia,ia,lp,4,ligw)

 l_rgwk = l_address(35,maxia,ia,lp,8,lrgw)

 l_nwksz = l_address(36,maxia,ia,lp,4,1)

 l_iwksz = l_address(37,maxia,ia,lp,4,1)

 l_rwork = l_address(38,maxia,ia,lp,8,nwksz)

 l_iwork = l_address(39,maxia,ia,lp,4,iwksz)

 l_xfield = l_address(40,maxia,ia,lp,8,nfield*2)

 l_nfield = l_address(41,maxia,ia,lp,4,1)

 l_f = l_address(42,maxia,ia,lp,8,nfield)

 l_maxt = l_address(43,maxia,ia,lp,4,1)

c write(*,*) lp,ln,maxia,ia,n,nexp,ntylr,ncellmx,

c & levmx,ligw,lrgw,nwksz,iwksz,nfield,

c & l_n,l_x,l_y,l_node,l_dnorm,

c & l_xmin,l_ymax,l_ymin,l_ielem,l_itree,

c & l_level,l_loct,l_numt,l_ifath,l_lowlev,

c & l_maxl,l_levmx,l_nexp,l_ntylr,l_tolerance,

c & l_ncellmx,l_nleafmx,l_mxl,l_u,l_ax,

c & l_sb,l_sx,l_ligw,l_lrgw,l_igwk,

c & l_rgwk,l_nwksz,l_iwksz,l_rwork,l_iwork,

c & l_xfield,l_nfield,l_f

c pause

 return

70

 end

C==

 integer function l_address(ln,maxia,ia,lp,ibyte,length)

 dimension ia(maxia)

 l_address = lp

 ia(ln) = lp

 iu = 16

 inc = (ibyte*length-1)/iu+1

 lp = lp+inc

 if(ln.gt.maxia) then

 write(*,*) '!Specified # of variables maxia',maxia,'is too small'

 stop

 endif

 return

 end

c ==

 subroutine assigni(i,ii)

 integer i,ii

 ii = i

 return

 end

c==

 subroutine assignd(h,hh)

 real*8 h,hh

 hh = h

 return

 end

c==

 subroutine fmmmain(maxa,maxia,am,ia,n,x,y,node,dnorm,bc,

 & a,b,xmax,xmin,ymax,ymin,ielem,itree,level,loct,numt,

 & ifath,lowlev,maxl,levmx,nexp,ntylr,tolerance,ncellmx,

 & nleafmx,mxl,u,ax,nfield,xfield,f,sb,sx,igwk,rgwk,

 & ligw,lrgw,nwksz,iwksz,rwork,iwork,maxt)

 implicit real*8(a-h,o-z)

C real*8 am(maxa),a,b !I change

 complex*16 am(maxa),a,b

 dimension ia(maxia),ja(1),a(0:nexp,ncellmx),b(0:ntylr,ncellmx),

 & x(2,n),y(2,n),node(2,n),dnorm(2,n),bc(2,3*n), !I change

 & ielem(n),itree(ncellmx),level(0:levmx),loct(ncellmx),

 & numt(ncellmx),ifath(ncellmx),u(3*n),ax(3*n),sb(3*n),sx(3*n),!I change

71

 & igwk(ligw),rgwk(lrgw),rwork(nwksz),iwork(iwksz),

 & xfield(2,nfield),f(nfield) !,G(3*N,3*N),H(3*N,3*N) !I change

C & ,AUU(N,N,279) !I change

 external matvec,msolve

c Input parameters and prepare the BEM model

 call prep_model(n,x,y,node,bc,dnorm,xfield,nfield,maxl,levmx,

 & nexp,tolerance,maxt,xmin,xmax,ymin,ymax) !,ntylr

C WRITE(*,*)xmin,xmax,ymin,ymax

C DO I=1,N

C WRITE(*,*) I,'X',dnorm(1,I),'XX',dnorm(2,I)

C WRITE(*,*) I,'X',BC(1,3*I-1),'XX',BC(2,3*I-1)

C WRITE(*,*) I,'X',BC(1,3*I),'XX',BC(2,3*I)

C ENDDO

C PAUSE

c Generate the quad-tree structure for the elements

 call tree(n,x,xmax,xmin,ymax,ymin,ielem,itree,level,loct,numt,

 & ifath,lowlev,maxl,levmx,ncellmx,nleafmx,nwksz,iwork)

c DO I=1,36

c WRITE(*,*) I,iwork(I) !ifath(I),

c ENDDO

C PAUSE

C CALL GHMATC(N,Y,X,G,H) !(N,Y(1,I),Y(2,I),X(1,I),X(2,I),G,H) I change

C PAUSE

c Compute the right-hand-side vector b with the FMM

 call fmmbvector(n,x,y,node,dnorm,bc,u,ax,a,b,xmax,xmin,ymax,ymin,

 & ielem,itree,level,loct,numt,ifath, !we here

 & nexp,ntylr,ncellmx,lowlev,maxl,

 & rwork,iwork,maxt)

c WRITE(15,*) 'AUU(1,9,1)'

c WRITE(*,*) AUU(1,9,1)

c PAUSE

c Solve the BEM system of equations Ax=b with the fast multipole BEM

c Prepare parameters for calling the iterative solver GMRES

c (SLATEC GMRES solver is used,which is available at www.netlib.org.

c See the documentation for the SLATEC GMRES solver for more information

c about the following related parameters)

72

C do i=1,36 !3*n

C write(*,*)'rwork', rwork(i)

C enddo

C pause

c DO I=1,50

c WRITE(*,*) ja(I)

c ENDDO

c PAUSE

 nelt = 1

 isym = 0

 itol = 0

 tol = tolerance

 iunit = 3

 igwk(1) = mxl

 igwk(2) = mxl

 igwk(3) = 0

 igwk(4) = 1

 igwk(5) = 10

 do i=1,n

c write(*,*) ax(3*i-2)

c write(*,*) ax(3*i-1)

c write(*,*) ax(3*i)

 ax(3*i-2) = 0.d0

 ax(3*i-1) = 0.d0

 ax(3*i) = 0.d0

 enddo

c pause

c do k=1,324

c write(*,*) k,iwork(k),rwork(k)

c enddo

c pause

 write(*,*) ' Call Equation Solver GMRES...'

 call dgmres(3*n,u,ax,nelt,ia,ja,am,isym,matvec,msolve,itol,tol, !I CHANGE

 & itmax,iter,er,ierr,iunit,sb,sx,rgwk,lrgw,igwk,ligw,

 & rwork,iwork)

 write(3,*) ' Error indicator from GMRES:',ierr

 write(*,*) ' Error indicator from GMRES:',ierr

 WRITE(*,*) '======================================='

 WRITE(3,*) '======================================='

c Output the boundary solution

73

 do i=1,n

 u(3*ielem(i)-2) = ax(3*i-2)

 u(3*ielem(i)-1) = ax(3*i-1)

 u(3*ielem(i)) = ax(3*i)

 enddo

 write(3,*)'Fast Multipole BEM Solution:'

c write(7,*)'Fast Multipole BEM Solution:'

 WRITE(3,1)

 1 FORMAT(' NO.',6X,'Rx',13X,'Ry',13X,'W',13X,'Mx',13X,'My',13X,'Q')

 do i=1,n

 IF(bc(1,3*I-2).EQ.1.AND.bc(1,3*I-1).EQ.1.AND.

 & bc(1,3*I).EQ.1) THEN

 write(3,2)i,bc(2,3*i-2),bc(2,3*i-1),

 & bc(2,3*i),u(3*i-2),u(3*i-1),u(3*i)

 ELSEIF(bc(1,3*I-2).EQ.1.AND.bc(1,3*I-1).EQ.1.AND.

 & bc(1,3*I).EQ.2) THEN

 write(3,2)i,bc(2,3*i-2),bc(2,3*i-1),

 & u(3*i),u(3*i-2),u(3*i-1),bc(2,3*i)

 ELSEIF(bc(1,3*I-2).EQ.1.AND.bc(1,3*I-1).EQ.2.AND.

 & bc(1,3*I).EQ.1) THEN

 write(3,2)i,bc(2,3*i-2),u(3*i-1),bc(2,3*i)

 & ,u(3*i-2),bc(2,3*i-1),u(3*i)

 ELSEIF(bc(1,3*I-2).EQ.1.AND.bc(1,3*I-1).EQ.2.AND.

 & bc(1,3*I).EQ.2) THEN

 write(3,2)i,bc(2,3*i-2),u(3*i-1),u(3*i)

 & ,u(3*i-2),bc(2,3*i-1),bc(2,3*i)

 ELSEIF(bc(1,3*I-2).EQ.2.AND.bc(1,3*I-1).EQ.1.AND.

 & bc(1,3*I).EQ.1) THEN

 write(3,2)i,u(3*i-2),bc(2,3*i-1),bc(2,3*i)

 & ,bc(2,3*i-2),u(3*i-1),u(3*i)

 ELSEIF(bc(1,3*I-2).EQ.2.AND.bc(1,3*I-1).EQ.1.AND.

 & bc(1,3*I).EQ.2) THEN

 write(3,2)i,u(3*i-2),bc(2,3*i-1),u(3*i)

 & ,bc(2,3*i-2),u(3*i-1),bc(2,3*i)

 ELSEIF(bc(1,3*I-2).EQ.2.AND.bc(1,3*I-1).EQ.2.AND.

 & bc(1,3*I).EQ.2) THEN

 write(3,2)i,u(3*i-2),u(3*i-1),u(3*i),bc(2,3*i-2)

 & ,bc(2,3*i-1),bc(2,3*i)

 ELSE

74

 WRITE(*,*) 'Error in writing output results'

 STOP

 ENDIF

 enddo

 2 FORMAT(I3,6E15.8)

c Evaluate the field inside the domainand output the results

C subroutine domain_field(nfield,xfield,UIP,SIP,n,x,y,bc,node,UR)

 call domain_field(nfield,xfield,n,x,y,bc,node,u) !UIP,SIP,

 return

 end

c ===

 subroutine prep_model(n,x,y,node,bc,dnorm,xfield,nfield,maxl,

 & levmx,nexp,tolerance,maxt, ! ,ntylr

 & xmin,xmax,ymin,ymax)

 implicit real*8(a-h,o-z)

c INTEGER NODE

 dimension x(2,*),Y(2,N),node(2,N),bc(2,*),dnorm(2,*)

 + ,xfield(2,*) !I change

 write(*,*) ' Reading input data...'

 write(*,2) n,maxl,levmx,maxt,tolerance !,nexp

 write(3,2) n,maxl,levmx,maxt,tolerance !,nexp

 2 format(' Total number of elements =',I12

 & /' Max. number of elements in aleaf =',I12

 & /' Max. number of tree levels =',I12

 & /' Number of terms used in expansions =',I12

 & /' Tolerance for convergence =',D12.3)

 write(3,*) "=="

 DO I=1,N

 DO J=1,2

 X(J,I)=0.0

 Y(J,I)=0.0

 NODE(J,I)=0.0

 DNORM(J,I)=0.0

 ENDDO

 ENDDO

 DO I=1,3*N

 DO J=1,2

 BC(J,I)=0.D0

 ENDDO

75

 ENDDO

C==Input the mesh data

c write(*,*) " reading input data..."

 read(5,*)

 do i=1,n

 read(5,*)itemp,Y(1,i),Y(2,i)

c WRITE(*,*) 'xxx',itemp,y(1,i),y(2,i)

 enddo

 read(5,*)

 write(*,*) " Reading Boundary condions..."

c write(*,*) ' No., of elements =',n

 do i=1,n

 read(5,*)itemp,node(1,i),node(2,i),bc(1,3*I-2),bc(2,3*I-2),

 + bc(1,3*I-1),bc(2,3*I-1),bc(1,3*I),bc(2,3*I) !I change

C write(*,*) i,bc(1,3*I),bc(2,3*I) !Y(1,i),Y(2,i)

 enddo

C PAUSE

C==Input the field points inside the domain

 if (nfield.gt.0) then

 write(*,*) ' co-ordinates of points inside domain....'

 read(5,*)

 do i=1,nfield

 read(5,*)itemp,xfield(1,i),xfield(2,i)

 write(*,*) itemp,xfield(1,i),xfield(2,i)

 enddo

 endif

C==Compute mid-nodes and normals of the elements

C write(*,*) "====mid-nodes and normals of the elements====="

C write(*,*) 'i,x(1,i),x(2,i),h1,h2,el,dnorm(1,i),dnorm(2,i)'

c write(11,*) "====mid-nodes and normals of the elements====="

c write(11,*) 'i, ,x(1,i), ,x(2,i), ,el, ,dnorm(1,i),

c & ,dnorm(2,i)'

C do i=1,n

C write(*,*) i,node(1,i),Y(1,I) !,'BVC',Y(1,node(1,i)) !,node(2,i)

C enddo

C pause

 do i=1,n

c write(*,*) i,node(1,i),node(2,i),y(1,node(1,i)),

c + y(2,node(1,i)),y(1,node(2,i)),

76

c + y(2,node(2,i))

c pause

 x(1,i) = (Y(1,node(1,i)) + Y(1,node(2,i)))*0.5

 x(2,i) = (Y(2,node(1,i)) + Y(2,node(2,i)))*0.5

 h1 = Y(2,node(2,i)) - Y(2,node(1,i))

 h2 = -Y(1,node(2,i)) + Y(1,node(1,i))

 el = sqrt(h1**2 + h2**2)

c write(*,*) i,node(1,i+1),node(2,i+1)

c pause

C endif

 dnorm(1,i) = h1/el

 dnorm(2,i) = h2/el

C write(*,*) i,x(1,i),x(2,i),h1,h2,el,dnorm(1,i),dnorm(2,i)

c write(11,*) i,x(1,i),x(2,i),el,dnorm(1,i),dnorm(2,i)

 enddo

c 14 format(i5,2x,f10.4,2x,f10.4,2x,f10.4,2x,f10.4,2x,f10.4)

c Determine the square bounding the problem domain (Largest cell used in FMM)

 xmin=x(1,1)

 xmax=x(1,1)

 ymin=x(2,1)

 ymax=x(2,1)

 do 10 i=2,n

 if(x(1,i).le.xmin) then

 xmin=x(1,i)

 elseif(x(1,i).ge.xmax) then

 xmax=x(1,i)

 endif

 if(x(2,i).le.ymin) then

 ymin=x(2,i)

 elseif(x(2,i).ge.ymax) then

 ymax=x(2,i)

 endif

 10 continue

c write(*,*) 'corner coordinates ofthe',

c & 'square bounding the problem domain= (',xmin,',',ymin,')','&',

c & '(',xmax,',',ymax,')'

 scale = 1.05d0 !Make the squares lightly larger

77

 xyd = max(xmax-xmin,ymax-ymin)/2.d0

 xyd = xyd*scale

 cx = (xmin+xmax)/2.d0

 cy = (ymin+ymax)/2.d0

 xmin = cx-xyd

 xmax = cx+xyd

 ymin = cy-xyd

 ymax = cy+xyd

c write(*,*) 'corner coordinates ofthe',

c & 'square bounding the problem domain after scaled = (',xmin,',',

c & ymin,')','&','(',xmax,',',ymax,')'

c pause

c write(11,*) 'corner coordinates ofthe',

c & 'square bounding the problem domain after scaled = (',xmin,',',

c & ymin,')','&','(',xmax,',',ymax,')'

c Output nodal coordinates for plotting

c write(8,*) 'nodal coordinates for plotting'

c do i = 1,n

c write(8,*) x(1,i),x(2,i)

c enddo

C PAUSE

 write(*,*)

 write(*,*) " Reading input file ==> Done"

 write(*,*)

 return

 end

C==

c--

 subroutine fmmbvector(n,x,y,node,dnorm,bc,u,ax,a,b,xmax,xmin,

 & ymax,ymin,ielem,itree,level,loct,numt,ifath,

 & nexp,ntylr,ncellmx,lowlev,maxl,rwork,iwork,maxt)

 implicit real*8(a-h,o-z)

 real*8 a,b

 integer flash

c complex*16 a,b

 dimension a(0:nexp,ncellmx),b(0:ntylr,ncellmx),

 & x(2,*),y(2,*),node(2,*),dnorm(2,*),bc(2,*),u(*),ax(*), !I change

 & ielem(*),itree(*),level(0:*),loct(*),numt(*),ifath(*),

 & rwork(*),iwork(*)

c Switch the BC type

78

 do i=1,3*n !I change

 if(bc(1,i).eq.1.) then

 bc(1,i) = 2.d0

 else

 bc(1,i) = 1.d0

 endif

 enddo

 do i=1,n !I change

 u(3*i-2) = bc(2,3*ielem(i)-2)

 u(3*i-1) = bc(2,3*ielem(i)-1)

 u(3*i) = bc(2,3*ielem(i))

c write(*,*) ielem(i),u(3*i-2),u(3*i-1),u(3*i)

 ax(3*i-2) = 0.d0

 ax(3*i-1) = 0.d0

 ax(3*i) = 0.d0

 enddo

 flash=1

c pause

c Apply the FMM to compute the right-hand side vector b

 call upward(u,n,y,node,dnorm,bc,a,xmax,xmin,ymax,ymin,ielem,

 & itree,level,loct,numt,ifath,nexp,ncellmx,lowlev,maxl,maxt) !we here too

 write(*,*) ' Please wait for calculations...'

 call dwnwrd(u,ax,n,x,y,node,dnorm,bc,a,b,xmax,xmin,ymax,ymin,

 & ielem,itree,level,loct,numt,ifath,nexp,ntylr,ncellmx,

 & lowlev,maxl,rwork,iwork,flash,maxt)

 write(*,*) ' Thanks for Waiting...'

c Store b vector in u and switch the BC type back

c write(15,*) '=======uuuuuu======'

 do i=1,3*n

c write(*,*) 'ax',i,ax(i)

 u(i) =- ax(i)

c write(15,*)i, u(i)

 if(bc(1,i).eq.1.) then

 bc(1,i) = 2.d0

 else

 bc(1,i) = 1.d0

 endif

 enddo

79

c write(15,*) '=======uuuuuu======'

c pause

 return

 end

c--

 subroutine upward(u,n,y,node,dnorm,bc,a,xmax,xmin,ymax,ymin,ielem,

 & itree,level,loct,numt,ifath,nexp,ncellmx,lowlev,maxl,maxt)

 implicit real*8(a-h,o-z)

 real*8 a !,z0,zi,b

 dimension a(0:nexp,ncellmx),

 & y(2,*),node(2,*),dnorm(2,*),bc(2,*),u(*),

 & ielem(*),itree(*),level(0:*),loct(*),numt(*),ifath(*)

c write(*,*)'kkkkk', level(lowlev+1)-1

c pause

 do i=1,level(lowlev+1)-1

 do k=0,nexp

 a(k,i) = (0.d0,0.d0) !Clear multipole moments

 enddo

 enddo

c write(*,*) maxt

c pause

c iiki=iiki+1

c write(*,*)iiki, '======U====='

c do i=1,n

c write(*,*) I,u(3*i-2), u(3*i-1),u(3*i)

c enddo

c pause

c write(*,*) '======='

 do 10 lev=lowlev,2,-1 !Loop from leaf to level 2 cells(Upward)

 ndivx = 2**lev

 dx = (xmax-xmin)/ndivx !Determine cell size

 dy = (ymax-ymin)/ndivx

 do 20 icell=level(lev),level(lev+1)-1 !Loop for level l cells

 itr = itree(icell)

 itrx = mod(itr,ndivx)

 itry = itr/ndivx !Position of the cell

 cx = xmin+(itrx + 0.5d0)*dx

 cy = ymin+(itry + 0.5d0)*dy !Center of the cell

c WRITE(*,*) ICELL,CX,CY, numt(icell)

c PAUSE

80

c Multipole expansion

 if(numt(icell).le.maxl.or.lev.eq.lowlev) then !Compute moment

c WRITE(*,*) ICELL,CX,CY, numt(icell)

c PAUSE

 call moment(a(0,icell),y,node,ielem(loct(icell)),

 &numt(icell),nexp,cx,cy,u(3*loct(icell)-2),

 &bc,dnorm,maxt)

 endif

c do idi=0,nexp-1

c write(*,*) idi, icell,a(idi,icell)

c enddo

c pause

c M2M translation

 if(lev.ne.2) then !Do M2M translation to form moments

c WRITE(*,*) 'M2M'

 cxp = xmin+(int(itrx/2)*2 + 1)*dx

 cyp = ymin+(int(itry/2)*2 + 1)*dy !Center of parent cell

 r1= -cx+cxp !(z_c - z_c')

 r2= -cy+cyp

 io = ifath(icell) !Cell no. of parent cell

c if(icell.eq.20.or.icell.eq.39) then

c write(*,*) r1,r2,icell,io

c do k=0,30 !nexp

c write(*,*)k,'dffd',a(k,io), a(k,icell)

c enddo

c pause

c endif

c write(*,*)icell,io !,cx,cy,cxp,cyp !r1,r2,,a(62,io),a(62,icell)

 do k=0,nexp-1,31 !Use M2M

c write(*,*) k

 a(k+0,io) = a(k+0,io) + a(k+0,icell) ! c0

 if(maxt.eq.1) goto 24

c write(*,*) 'C0',a(k+0,io)

 a(k+1,io) = a(k+1,io) + a(k+1,icell)- r1*a(k+0,icell) ! c1

c write(*,*) 'C1',a(k+1,io)

 a(k+2,io) = a(k+2,io) + a(k+2,icell)- r2*a(k+0,icell) ! c2

 if(maxt.eq.2) goto 24

81

c write(*,*) 'C2',a(k+2,io)

 a(k+3,io) = a(k+3,io) + a(k+3,icell)- r1*a(k+1,icell) ! c11

 & +r1**2/2*a(k+0,icell)

c write(*,*) 'C11',a(k+3,io)

 a(k+4,io) = a(k+4,io) + a(k+4,icell)- (r2*a(k+1,icell)+

 & r1*a(k+2,icell))/2+r1*r2/2*a(k+0,icell) ! c12

 write(*,*) 'C12',a(k+4,io)

 a(k+5,io) =a(k+4,io) !a(k+5,io) + a(k+5,icell)- (r1*a(k+2,icell)+

c & r2*a(k+1,icell))/2+r1*r2/2*a(k+0,icell) ! c21

c write(*,*) 'C21',a(k+5,io)

 a(k+6,io) = a(k+6,io) + a(k+6,icell)- r2*a(k+2,icell) ! c22

 & +r2**2/2*a(k+0,icell)

 if(maxt.eq.3) goto 24

c write(*,*) 'C22',a(k+6,io)

 a(k+7,io) = a(k+7,io) + a(k+7,icell)- r1*a(k+3,icell) ! c111

 & +r1**2/2*a(k+1,icell)-r1**3/6*a(k+0,icell)

 write(*,*) 'C111',a(k+7,io)

 a(k+8,io) = a(k+8,io) + a(k+8,icell)+(- r2*a(k+3,icell)+

 & r1*r2/2*a(k+1,icell)- r1*a(k+4,icell)+r1*r2/2*a(k+1,icell)-

 & r1*a(k+5,icell)+r1**2/2*a(k+2,icell))/3

 & -r2*r1**2/6*a(k+0,icell) ! c112

c write(*,*) 'C112',a(k+8,io)

 a(k+9,io) =a(k+8,io) !a(k+9,io) + a(k+9,icell)+(- r2*a(k+3,icell)+

c & r1*r2/2*a(k+1,icell)- r1*a(k+4,icell)+r1*r2/2*a(k+1,icell)-

c & r1*a(k+5,icell)+r1**2/2*a(k+2,icell))/3

c & -r2*r1**2/6*a(k+0,icell) ! c121

c write(*,*) 'C121',a(k+9,io)

 a(k+10,io) = a(k+10,io)+ a(k+10,icell)+(- r2*a(k+4,icell)+

 & r2**2/2*a(k+1,icell)- r2*a(k+5,icell)+r1*r2/2*a(k+2,icell)-

 & r1*a(k+6,icell)+r1*r2/2*a(k+2,icell))/3

 & -r1*r2**2/6*a(k+0,icell) ! c122

c write(*,*) 'C122',a(k+10,io)

 a(k+11,io) = a(k+8,io)!a(k+11,io)+ a(k+11,icell)+(- r2*a(k+3,icell)+

c & r1*r2/2*a(k+1,icell)- r1*a(k+4,icell)+r1*r2/2*a(k+1,icell)-

c & r1*a(k+5,icell)+r1**2/2*a(k+2,icell))/3

c & -r2*r1**2/6*a(k+0,icell) ! c211

c write(*,*) 'C211',a(k+11,io)

 a(k+12,io) = a(k+10,io)!a(k+12,io)+ a(k+12,icell)+(- r2*a(k+4,icell)+

c & r2**2/2*a(k+1,icell)- r2*a(k+5,icell)+r1*r2/2*a(k+2,icell)-

82

c & r1*a(k+6,icell)+r1*r2/2*a(k+2,icell))/3

c & -r1*r2**2/6*a(k+0,icell) ! c212

c write(*,*) 'C212',a(k+12,io)

 a(k+13,io) =a(k+10,io) !a(k+13,io) + a(k+13,icell)+(- r2*a(k+4,icell)+

c & r2**2/2*a(k+1,icell)- r2*a(k+5,icell)+r1*r2/2*a(k+2,icell)-

c & r1*a(k+6,icell)+r1*r2/2*a(k+2,icell))/3

c & -r1*r2**2/6*a(k+0,icell) ! c221

c write(*,*) 'C221',a(k+13,io)

 a(k+14,io) = a(k+14,io) + a(k+14,icell)- r2*a(k+6,icell) !c222

 & +r2**2/2*a(k+2,icell)-r2**3/6*a(k+0,icell)

 if(maxt.eq.4) goto 24

c write(*,*) 'C222',a(k+14,io)

 a(k+15,io) = a(k+15,io) + a(k+15,icell)- r1*a(k+7,icell) !c1111

 & +r1**2/2*a(k+3,icell)-r1**3/6*a(k+1,icell)+ r1**4/24*a(k+0,icell)

c write(*,*) 'C1111',a(k+15,io)

 a(k+16,io) = a(k+16,io) + a(k+16,icell)+(- r2*a(k+7,icell)+

 & r1*r2/2*a(k+3,icell)-r2*r1**2/6*a(k+1,icell)- r1*a(k+8,icell)+

 & r1*r2/2*a(k+3,icell)-r2*r1**2/6*a(k+1,icell)- r1*a(k+9,icell)+

 & r1**2/2*a(k+4,icell)-r2*r1**2/6*a(k+1,icell)- r1*a(k+11,icell)+

 & r1**2/2*a(k+5,icell)-r1**3/6*a(k+2,icell))/4

 & + r2*r1**3/24*a(k+0,icell) ! c1112

c write(*,*) 'C1112',a(k+16,io)

 a(k+17,io) =a(k+16,io) !a(k+17,io) + a(k+17,icell)+(- r2*a(k+7,icell)+

c & r1*r2/2*a(k+3,icell)-r2*r1**2/6*a(k+1,icell)- r1*a(k+8,icell)+

c & r1*r2/2*a(k+3,icell)-r2*r1**2/6*a(k+1,icell)- r1*a(k+9,icell)+

c & r1**2/2*a(k+4,icell)-r2*r1**2/6*a(k+1,icell)- r1*a(k+11,icell)+

c & r1**2/2*a(k+5,icell)-r1**3/6*a(k+2,icell))/4

c & + r2*r1**3/24*a(k+0,icell) ! c1121

c write(*,*) 'C1121',a(k+17,io)

 a(k+18,io) = a(k+18,io) + a(k+18,icell)+(- r2*a(k+8,icell)+

 & r2**2/2*a(k+3,icell)-r1*r2**2/6*a(k+1,icell)- r2*a(k+9,icell)+

 & r1*r2/2*a(k+4,icell)-r1*r2**2/6*a(k+1,icell)- r1*a(k+10,icell)+

 & r1*r2/2*a(k+4,icell)-r1*r2**2/6*a(k+1,icell)- r2*a(k+11,icell)+

 & r1*r2/2*a(k+5,icell)-r2*r1**2/6*a(k+2,icell)- r1*a(k+12,icell)+

 & r1*r2/2*a(k+5,icell)-r2*r1**2/6*a(k+2,icell)- r1*a(k+13,icell)+

 & r1**2/2*a(k+6,icell)-r2*r1**2/6*a(k+2,icell))/6

 & + r1**2*r2**2/24*a(k+0,icell) ! c1122

c write(*,*) 'C1122',a(k+18,io)

 a(k+19,io) =a(k+16,io) !a(k+19,io) + a(k+19,icell)+(- r2*a(k+7,icell)+

c & r1*r2/2*a(k+3,icell)-r2*r1**2/6*a(k+1,icell)- r1*a(k+8,icell)+

83

c & r1*r2/2*a(k+3,icell)-r2*r1**2/6*a(k+1,icell)- r1*a(k+9,icell)+

c & r1**2/2*a(k+4,icell)-r2*r1**2/6*a(k+1,icell)- r1*a(k+11,icell)+

c & r1**2/2*a(k+5,icell)-r1**3/6*a(k+2,icell))/4

c & + r2*r1**3/24*a(k+0,icell) ! c1211

c write(*,*) 'C1211',a(k+19,io)

 a(k+20,io) =a(k+18,io) !a(k+20,io) + a(k+20,icell)+(- r2*a(k+8,icell)+

c & r2**2/2*a(k+3,icell)-r1*r2**2/6*a(k+1,icell)- r2*a(k+9,icell)+

c & r1*r2/2*a(k+4,icell)-r1*r2**2/6*a(k+1,icell)- r1*a(k+10,icell)+

c & r1*r2/2*a(k+4,icell)-r1*r2**2/6*a(k+1,icell)- r2*a(k+11,icell)+

c & r1*r2/2*a(k+5,icell)-r2*r1**2/6*a(k+2,icell)- r1*a(k+12,icell)+

c & r1*r2/2*a(k+5,icell)-r2*r1**2/6*a(k+2,icell)- r1*a(k+13,icell)+

c & r1**2/2*a(k+6,icell)-r2*r1**2/6*a(k+2,icell))/6

c & + r1**2*r2**2/24*a(k+0,icell) ! c1212

c write(*,*) 'C1212',a(k+20,io)

 a(k+21,io) =a(k+18,io) !a(k+21,io) + a(k+21,icell)+(- r2*a(k+8,icell)+

c & r2**2/2*a(k+3,icell)-r1*r2**2/6*a(k+1,icell)- r2*a(k+9,icell)+

c & r1*r2/2*a(k+4,icell)-r1*r2**2/6*a(k+1,icell)- r1*a(k+10,icell)+

c & r1*r2/2*a(k+4,icell)-r1*r2**2/6*a(k+1,icell)- r2*a(k+11,icell)+

c & r1*r2/2*a(k+5,icell)-r2*r1**2/6*a(k+2,icell)- r1*a(k+12,icell)+

c & r1*r2/2*a(k+5,icell)-r2*r1**2/6*a(k+2,icell)- r1*a(k+13,icell)+

c & r1**2/2*a(k+6,icell)-r2*r1**2/6*a(k+2,icell))/6

c & + r1**2*r2**2/24*a(k+0,icell) ! c1221

c write(*,*) 'C1221',a(k+21,io)

 a(k+22,io) = a(k+22,io) + a(k+22,icell)+(- r2*a(k+10,icell)+

 & r2**2/2*a(k+4,icell)-r2**3/6*a(k+1,icell)- r2*a(k+12,icell)+

 & r2**2/2*a(k+5,icell)-r1*r2**2/6*a(k+2,icell)- r2*a(k+13,icell)+

 & r1*r2/2*a(k+6,icell)-r1*r2**2/6*a(k+2,icell)- r1*a(k+14,icell)+

 & r1*r2/2*a(k+6,icell)-r1*r2**2/6*a(k+2,icell))/4

 & + r1*r2**3/24*a(k+0,icell) ! c1222

c write(*,*) 'C1222',a(k+22,io)

 a(k+23,io) =a(k+16,io) !a(k+23,io) + a(k+23,icell)+(- r2*a(k+7,icell)+

c & r1*r2/2*a(k+3,icell)-r2*r1**2/6*a(k+1,icell)- r1*a(k+8,icell)+

c & r1*r2/2*a(k+3,icell)-r2*r1**2/6*a(k+1,icell)- r1*a(k+9,icell)+

c & r1**2/2*a(k+4,icell)-r2*r1**2/6*a(k+1,icell)- r1*a(k+11,icell)+

c & r1**2/2*a(k+5,icell)-r1**3/6*a(k+2,icell))/4

c & + r2*r1**3/24*a(k+0,icell) ! c2111

c write(*,*) 'C2111',a(k+23,io)

 a(k+24,io) =a(k+18,io) !a(k+24,io) + a(k+24,icell)+(- r2*a(k+8,icell)+

c & r2**2/2*a(k+3,icell)-r1*r2**2/6*a(k+1,icell)- r2*a(k+9,icell)+

c & r1*r2/2*a(k+4,icell)-r1*r2**2/6*a(k+1,icell)- r1*a(k+10,icell)+

84

c & r1*r2/2*a(k+4,icell)-r1*r2**2/6*a(k+1,icell)- r2*a(k+11,icell)+

c & r1*r2/2*a(k+5,icell)-r2*r1**2/6*a(k+2,icell)- r1*a(k+12,icell)+

c & r1*r2/2*a(k+5,icell)-r2*r1**2/6*a(k+2,icell)- r1*a(k+13,icell)+

c & r1**2/2*a(k+6,icell)-r2*r1**2/6*a(k+2,icell))/6

c & + r1**2*r2**2/24*a(k+0,icell) ! c2112

c write(*,*) 'C2112',a(k+24,io)

 a(k+25,io) =a(k+18,io) !a(k+25,io) + a(k+25,icell)+(- r2*a(k+8,icell)+

c & r2**2/2*a(k+3,icell)-r1*r2**2/6*a(k+1,icell)- r2*a(k+9,icell)+

c & r1*r2/2*a(k+4,icell)-r1*r2**2/6*a(k+1,icell)- r1*a(k+10,icell)+

c & r1*r2/2*a(k+4,icell)-r1*r2**2/6*a(k+1,icell)- r2*a(k+11,icell)+

c & r1*r2/2*a(k+5,icell)-r2*r1**2/6*a(k+2,icell)- r1*a(k+12,icell)+

c & r1*r2/2*a(k+5,icell)-r2*r1**2/6*a(k+2,icell)- r1*a(k+13,icell)+

c & r1**2/2*a(k+6,icell)-r2*r1**2/6*a(k+2,icell))/6

c & + r1**2*r2**2/24*a(k+0,icell) ! c2121

c write(*,*) 'C2121',a(k+25,io)

 a(k+26,io) =a(k+22,io) !a(k+26,io) + a(k+26,icell)+(- r2*a(k+10,icell)+

c & r2**2/2*a(k+4,icell)-r2**3/6*a(k+1,icell)- r2*a(k+12,icell)+

c & r2**2/2*a(k+5,icell)-r1*r2**2/6*a(k+2,icell)- r2*a(k+13,icell)+

c & r1*r2/2*a(k+6,icell)-r1*r2**2/6*a(k+2,icell)- r1*a(k+14,icell)+

c & r1*r2/2*a(k+6,icell)-r1*r2**2/6*a(k+2,icell))/4

c & + r1*r2**3/24*a(k+0,icell) ! c2122

c write(*,*) 'C2122',a(k+26,io)

 a(k+27,io) =a(k+18,io) !a(k+27,io) + a(k+27,icell)+(- r2*a(k+8,icell)+

c & r2**2/2*a(k+3,icell)-r1*r2**2/6*a(k+1,icell)- r2*a(k+9,icell)+

c & r1*r2/2*a(k+4,icell)-r1*r2**2/6*a(k+1,icell)- r1*a(k+10,icell)+

c & r1*r2/2*a(k+4,icell)-r1*r2**2/6*a(k+1,icell)- r2*a(k+11,icell)+

c & r1*r2/2*a(k+5,icell)-r2*r1**2/6*a(k+2,icell)- r1*a(k+12,icell)+

c & r1*r2/2*a(k+5,icell)-r2*r1**2/6*a(k+2,icell)- r1*a(k+13,icell)+

c & r1**2/2*a(k+6,icell)-r2*r1**2/6*a(k+2,icell))/6

c & + r1**2*r2**2/24*a(k+0,icell) ! c2211

c write(*,*) 'C2211',a(k+27,io)

 a(k+28,io) =a(k+22,io) !a(k+28,io) + a(k+28,icell)+(- r2*a(k+10,icell)+

c & r2**2/2*a(k+4,icell)-r2**3/6*a(k+1,icell)- r2*a(k+12,icell)+

c & r2**2/2*a(k+5,icell)-r1*r2**2/6*a(k+2,icell)- r2*a(k+13,icell)+

c & r1*r2/2*a(k+6,icell)-r1*r2**2/6*a(k+2,icell)- r1*a(k+14,icell)+

c & r1*r2/2*a(k+6,icell)-r1*r2**2/6*a(k+2,icell))/4

c & + r1*r2**3/24*a(k+0,icell) ! c2212

c write(*,*) 'C2212',a(k+28,io)

 a(k+29,io) =a(k+22,io) !a(k+29,io) + a(k+29,icell)+(- r2*a(k+10,icell)+

c & r2**2/2*a(k+4,icell)-r2**3/6*a(k+1,icell)- r2*a(k+12,icell)+

85

c & r2**2/2*a(k+5,icell)-r1*r2**2/6*a(k+2,icell)- r2*a(k+13,icell)+

c & r1*r2/2*a(k+6,icell)-r1*r2**2/6*a(k+2,icell)- r1*a(k+14,icell)+

c & r1*r2/2*a(k+6,icell)-r1*r2**2/6*a(k+2,icell))/4

c & + r1*r2**3/24*a(k+0,icell) ! c2221

c write(*,*) 'C2221',a(k+29,io)

 a(k+30,io) = a(k+30,io) + a(k+30,icell)- r2*a(k+14,icell)+r2**2/2*

 & a(k+6,icell) -r2**3/6*a(k+2,icell)+ r2**4/24*a(k+0,icell) ! c2222

c write(*,*) 'C2222',a(k+30,io)

c if(icell.eq.20.or.icell.eq.39) PAUSE

 24 continue

 enddo

 endif

c if(icell.eq.19) then

c write(*,*) io,icell

c do k=0,278

c write(*,*) k,' ',a(k,io),' ',a(k,icell)

c enddo

c write(*,*) r1,r2,icell,io,a(62,io),a(62,icell)

c pause

c endif

 20 continue

 10 continue

c do i=1,level(lowlev+1)-1

c do k=0,nexp-1

c write(*,*) a(k,i)

c write(11,7) a(k,i)

c enddo

c 7 format(17(f30.26))

c write(*,*) i,'========================'

c write(11,*) i,'========================'

c pause

c enddo

c write(11,*) '===end=====end=====end===='

c write(*,*) '===end=====end=====end===='

 return

 end

c--

*DECK DGMRES

86

 SUBROUTINE DGMRES (N, B, X, NELT, IA, JA, A, ISYM, MATVEC, MSOLVE,

 + ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT, SB, SX, RGWK, LRGW,

 + IGWK, LIGW, RWORK, IWORK)

C***BEGIN PROLOGUE DGMRES

C***PURPOSE Preconditioned GMRES iterative sparse Ax=b solver.

C This routine uses the generalized minimum residual

C (GMRES) method with preconditioning to solve

C non-symmetric linear systems of the form: Ax = b.

C***LIBRARY SLATEC (SLAP)

C***CATEGORY D2A4, D2B4

C***TYPE DOUBLE PRECISION (SGMRES-S, DGMRES-D)

C***KEYWORDS GENERALIZED MINIMUM RESIDUAL, ITERATIVE PRECONDITION,

C NON-SYMMETRIC LINEAR SYSTEM, SLAP, SPARSE

C***AUTHOR Brown, Peter, (LLNL), pnbrown@llnl.gov

C Hindmarsh, Alan, (LLNL), alanh@llnl.gov

C Seager, Mark K., (LLNL), seager@llnl.gov

C Lawrence Livermore National Laboratory

C PO Box 808, L-60

C Livermore, CA 94550 (510) 423-3141

C***DESCRIPTION

C

C *Usage:

C INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, ITOL, ITMAX

C INTEGER ITER, IERR, IUNIT, LRGW, IGWK(LIGW), LIGW

C INTEGER IWORK(USER DEFINED)

C DOUBLE PRECISION B(N), X(N), A(NELT), TOL, ERR, SB(N), SX(N)

C DOUBLE PRECISION RGWK(LRGW), RWORK(USER DEFINED)

C EXTERNAL MATVEC, MSOLVE

C

C CALL DGMRES(N, B, X, NELT, IA, JA, A, ISYM, MATVEC, MSOLVE,

C $ ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT, SB, SX,

C $ RGWK, LRGW, IGWK, LIGW, RWORK, IWORK)

C

C *Arguments:

C N :IN Integer.

C Order of the Matrix.

C B :IN Double Precision B(N).

C Right-hand side vector.

C X :INOUT Double Precision X(N).

C On input X is your initial guess for the solution vector.

87

C On output X is the final approximate solution.

C NELT :IN Integer.

C Number of Non-Zeros stored in A.

C IA :IN Integer IA(NELT).

C JA :IN Integer JA(NELT).

C A :IN Double Precision A(NELT).

C These arrays contain the matrix data structure for A.

C It could take any form. See "Description", below,

C for more details.

C ISYM :IN Integer.

C Flag to indicate symmetric storage format.

C If ISYM=0, all non-zero entries of the matrix are stored.

C If ISYM=1, the matrix is symmetric, and only the upper

C or lower triangle of the matrix is stored.

C MATVEC :EXT External.

C Name of a routine which performs the matrix vector multiply

C Y = A*X given A and X. The name of the MATVEC routine must

C be declared external in the calling program. The calling

C sequence to MATVEC is:

C CALL MATVEC(N, X, Y, NELT, IA, JA, A, ISYM)

C where N is the number of unknowns, Y is the product A*X

C upon return, X is an input vector, and NELT is the number of

C non-zeros in the SLAP IA, JA, A storage for the matrix A.

C ISYM is a flag which, if non-zero, denotes that A is

C symmetric and only the lower or upper triangle is stored.

C MSOLVE :EXT External.

C Name of the routine which solves a linear system Mz = r for

C z given r with the preconditioning matrix M (M is supplied via

C RWORK and IWORK arrays. The name of the MSOLVE routine must

C be declared external in the calling program. The calling

C sequence to MSOLVE is:

C CALL MSOLVE(N, R, Z, NELT, IA, JA, A, ISYM, RWORK, IWORK)

C Where N is the number of unknowns, R is the right-hand side

C vector and Z is the solution upon return. NELT, IA, JA, A and

C ISYM are defined as above. RWORK is a double precision array

C that can be used to pass necessary preconditioning information

C and/or workspace to MSOLVE. IWORK is an integer work array

C for the same purpose as RWORK.

C ITOL :IN Integer.

C Flag to indicate the type of convergence criterion used.

88

C ITOL=0 Means the iteration stops when the test described

C below on the residual RL is satisfied. This is

C the "Natural Stopping Criteria" for this routine.

C Other values of ITOL cause extra, otherwise

C unnecessary, computation per iteration and are

C therefore much less efficient. See ISDGMR (the

C stop test routine) for more information.

C ITOL=1 Means the iteration stops when the first test

C described below on the residual RL is satisfied,

C and there is either right or no preconditioning

C being used.

C ITOL=2 Implies that the user is using left

C preconditioning, and the second stopping criterion

C below is used.

C ITOL=3 Means the iteration stops when the third test

C described below on Minv*Residual is satisfied, and

C there is either left or no preconditioning being

C used.

C ITOL=11 is often useful for checking and comparing

C different routines. For this case, the user must

C supply the "exact" solution or a very accurate

C approximation (one with an error much less than

C TOL) through a common block,

C COMMON /DSLBLK/ SOLN()

C If ITOL=11, iteration stops when the 2-norm of the

C difference between the iterative approximation and

C the user-supplied solution divided by the 2-norm

C of the user-supplied solution is less than TOL.

C Note that this requires the user to set up the

C "COMMON /DSLBLK/ SOLN(LENGTH)" in the calling

C routine. The routine with this declaration should

C be loaded before the stop test so that the correct

C length is used by the loader. This procedure is

C not standard Fortran and may not work correctly on

C your system (although it has worked on every

C system the authors have tried). If ITOL is not 11

C then this common block is indeed standard Fortran.

C TOL :INOUT Double Precision.

C Convergence criterion, as described below. If TOL is set

C to zero on input, then a default value of 500*(the smallest

89

C positive magnitude, machine epsilon) is used.

C ITMAX :DUMMY Integer.

C Maximum number of iterations in most SLAP routines. In

C this routine this does not make sense. The maximum number

C of iterations here is given by ITMAX = MAXL*(NRMAX+1).

C See IGWK for definitions of MAXL and NRMAX.

C ITER :OUT Integer.

C Number of iterations required to reach convergence, or

C ITMAX if convergence criterion could not be achieved in

C ITMAX iterations.

C ERR :OUT Double Precision.

C Error estimate of error in final approximate solution, as

C defined by ITOL. Letting norm() denote the Euclidean

C norm, ERR is defined as follows..

C

C If ITOL=0, then ERR = norm(SB*(B-A*X(L)))/norm(SB*B),

C for right or no preconditioning, and

C ERR = norm(SB*(M-inverse)*(B-A*X(L)))/

C norm(SB*(M-inverse)*B),

C for left preconditioning.

C If ITOL=1, then ERR = norm(SB*(B-A*X(L)))/norm(SB*B),

C since right or no preconditioning

C being used.

C If ITOL=2, then ERR = norm(SB*(M-inverse)*(B-A*X(L)))/

C norm(SB*(M-inverse)*B),

C since left preconditioning is being

C used.

C If ITOL=3, then ERR = Max |(Minv*(B-A*X(L)))(i)/x(i)|

C i=1,n

C If ITOL=11, then ERR = norm(SB*(X(L)-SOLN))/norm(SB*SOLN).

C IERR :OUT Integer.

C Return error flag.

C IERR = 0 => All went well.

C IERR = 1 => Insufficient storage allocated for

C RGWK or IGWK.

C IERR = 2 => Routine DGMRES failed to reduce the norm

C of the current residual on its last call,

C and so the iteration has stalled. In

C this case, X equals the last computed

C approximation. The user must either

90

C increase MAXL, or choose a different

C initial guess.

C IERR =-1 => Insufficient length for RGWK array.

C IGWK(6) contains the required minimum

C length of the RGWK array.

C IERR =-2 => Illegal value of ITOL, or ITOL and JPRE

C values are inconsistent.

C For IERR <= 2, RGWK(1) = RHOL, which is the norm on the

C left-hand-side of the relevant stopping test defined

C below associated with the residual for the current

C approximation X(L).

C IUNIT :IN Integer.

C Unit number on which to write the error at each iteration,

C if this is desired for monitoring convergence. If unit

C number is 0, no writing will occur.

C SB :IN Double Precision SB(N).

C Array of length N containing scale factors for the right

C hand side vector B. If JSCAL.eq.0 (see below), SB need

C not be supplied.

C SX :IN Double Precision SX(N).

C Array of length N containing scale factors for the solution

C vector X. If JSCAL.eq.0 (see below), SX need not be

C supplied. SB and SX can be the same array in the calling

C program if desired.

C RGWK :INOUT Double Precision RGWK(LRGW).

C Double Precision array used for workspace by DGMRES.

C On return, RGWK(1) = RHOL. See IERR for definition of RHOL.

C LRGW :IN Integer.

C Length of the double precision workspace, RGWK.

C LRGW >= 1 + N*(MAXL+6) + MAXL*(MAXL+3).

C See below for definition of MAXL.

C For the default values, RGWK has size at least 131 + 16*N.

C IGWK :INOUT Integer IGWK(LIGW).

C The following IGWK parameters should be set by the user

C before calling this routine.

C IGWK(1) = MAXL. Maximum dimension of Krylov subspace in

C which X - X0 is to be found (where, X0 is the initial

C guess). The default value of MAXL is 10.

C IGWK(2) = KMP. Maximum number of previous Krylov basis

C vectors to which each new basis vector is made orthogonal.

91

C The default value of KMP is MAXL.

C IGWK(3) = JSCAL. Flag indicating whether the scaling

C arrays SB and SX are to be used.

C JSCAL = 0 => SB and SX are not used and the algorithm

C will perform as if all SB(I) = 1 and SX(I) = 1.

C JSCAL = 1 => Only SX is used, and the algorithm

C performs as if all SB(I) = 1.

C JSCAL = 2 => Only SB is used, and the algorithm

C performs as if all SX(I) = 1.

C JSCAL = 3 => Both SB and SX are used.

C IGWK(4) = JPRE. Flag indicating whether preconditioning

C is being used.

C JPRE = 0 => There is no preconditioning.

C JPRE > 0 => There is preconditioning on the right

C only, and the solver will call routine MSOLVE.

C JPRE < 0 => There is preconditioning on the left

C only, and the solver will call routine MSOLVE.

C IGWK(5) = NRMAX. Maximum number of restarts of the

C Krylov iteration. The default value of NRMAX = 10.

C if IWORK(5) = -1, then no restarts are performed (in

C this case, NRMAX is set to zero internally).

C The following IWORK parameters are diagnostic information

C made available to the user after this routine completes.

C IGWK(6) = MLWK. Required minimum length of RGWK array.

C IGWK(7) = NMS. The total number of calls to MSOLVE.

C LIGW :IN Integer.

C Length of the integer workspace, IGWK. LIGW >= 20.

C RWORK :WORK Double Precision RWORK(USER DEFINED).

C Double Precision array that can be used for workspace in

C MSOLVE.

C IWORK :WORK Integer IWORK(USER DEFINED).

C Integer array that can be used for workspace in MSOLVE.

C

C *Description:

C DGMRES solves a linear system A*X = B rewritten in the form:

C

C (SB*A*(M-inverse)*(SX-inverse))*(SX*M*X) = SB*B,

C

C with right preconditioning, or

C

92

C (SB*(M-inverse)*A*(SX-inverse))*(SX*X) = SB*(M-inverse)*B,

C

C with left preconditioning, where A is an N-by-N double precision

C matrix, X and B are N-vectors, SB and SX are diagonal scaling

C matrices, and M is a preconditioning matrix. It uses

C preconditioned Krylov subpace methods based on the

C generalized minimum residual method (GMRES). This routine

C optionally performs either the full orthogonalization

C version of the GMRES algorithm or an incomplete variant of

C it. Both versions use restarting of the linear iteration by

C default, although the user can disable this feature.

C

C The GMRES algorithm generates a sequence of approximations

C X(L) to the true solution of the above linear system. The

C convergence criteria for stopping the iteration is based on

C the size of the scaled norm of the residual R(L) = B -

C A*X(L). The actual stopping test is either:

C

C norm(SB*(B-A*X(L))) .le. TOL*norm(SB*B),

C

C for right preconditioning, or

C

C norm(SB*(M-inverse)*(B-A*X(L))) .le.

C TOL*norm(SB*(M-inverse)*B),

C

C for left preconditioning, where norm() denotes the Euclidean

C norm, and TOL is a positive scalar less than one input by

C the user. If TOL equals zero when DGMRES is called, then a

C default value of 500*(the smallest positive magnitude,

C machine epsilon) is used. If the scaling arrays SB and SX

C are used, then ideally they should be chosen so that the

C vectors SX*X(or SX*M*X) and SB*B have all their components

C approximately equal to one in magnitude. If one wants to

C use the same scaling in X and B, then SB and SX can be the

C same array in the calling program.

C

C The following is a list of the other routines and their

C functions used by DGMRES:

C DPIGMR Contains the main iteration loop for GMRES.

C DORTH Orthogonalizes a new vector against older basis vectors.

93

C DHEQR Computes a QR decomposition of a Hessenberg matrix.

C DHELS Solves a Hessenberg least-squares system, using QR

C factors.

C DRLCAL Computes the scaled residual RL.

C DXLCAL Computes the solution XL.

C ISDGMR User-replaceable stopping routine.

C

C This routine does not care what matrix data structure is

C used for A and M. It simply calls the MATVEC and MSOLVE

C routines, with the arguments as described above. The user

C could write any type of structure and the appropriate MATVEC

C and MSOLVE routines. It is assumed that A is stored in the

C IA, JA, A arrays in some fashion and that M (or INV(M)) is

C stored in IWORK and RWORK in some fashion. The SLAP

C routines DSDCG and DSICCG are examples of this procedure.

C

C Two examples of matrix data structures are the: 1) SLAP

C Triad format and 2) SLAP Column format.

C

C =================== S L A P Triad format ===================

C This routine requires that the matrix A be stored in the

C SLAP Triad format. In this format only the non-zeros are

C stored. They may appear in *ANY* order. The user supplies

C three arrays of length NELT, where NELT is the number of

C non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)). For

C each non-zero the user puts the row and column index of that

C matrix element in the IA and JA arrays. The value of the

C non-zero matrix element is placed in the corresponding

C location of the A array. This is an extremely easy data

C structure to generate. On the other hand it is not too

C efficient on vector computers for the iterative solution of

C linear systems. Hence, SLAP changes this input data

C structure to the SLAP Column format for the iteration (but

C does not change it back).

C

C Here is an example of the SLAP Triad storage format for a

C 5x5 Matrix. Recall that the entries may appear in any order.

C

C 5x5 Matrix SLAP Triad format for 5x5 matrix on left.

C 1 2 3 4 5 6 7 8 9 10 11

94

C |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21

C |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2

C | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1

C | 0 0 0 44 0|

C |51 0 53 0 55|

C

C =================== S L A P Column format ==================

C

C This routine requires that the matrix A be stored in the

C SLAP Column format. In this format the non-zeros are stored

C counting down columns (except for the diagonal entry, which

C must appear first in each "column") and are stored in the

C double precision array A. In other words, for each column

C in the matrix put the diagonal entry in A. Then put in the

C other non-zero elements going down the column (except the

C diagonal) in order. The IA array holds the row index for

C each non-zero. The JA array holds the offsets into the IA,

C A arrays for the beginning of each column. That is,

C IA(JA(ICOL)), A(JA(ICOL)) points to the beginning of the

C ICOL-th column in IA and A. IA(JA(ICOL+1)-1),

C A(JA(ICOL+1)-1) points to the end of the ICOL-th column.

C Note that we always have JA(N+1) = NELT+1, where N is the

C number of columns in the matrix and NELT is the number of

C non-zeros in the matrix.

C

C Here is an example of the SLAP Column storage format for a

C 5x5 Matrix (in the A and IA arrays '|' denotes the end of a

C column):

C

C 5x5 Matrix SLAP Column format for 5x5 matrix on left.

C 1 2 3 4 5 6 7 8 9 10 11

C |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35

C |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3

C | 0 0 33 0 35| JA: 1 4 6 8 9 12

C | 0 0 0 44 0|

C |51 0 53 0 55|

C

C *Cautions:

C This routine will attempt to write to the Fortran logical output

C unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that

95

C this logical unit is attached to a file or terminal before calling

C this routine with a non-zero value for IUNIT. This routine does

C not check for the validity of a non-zero IUNIT unit number.

C

C***REFERENCES 1. Peter N. Brown and A. C. Hindmarsh, Reduced Storage

C Matrix Methods in Stiff ODE Systems, Lawrence Liver-

C more National Laboratory Report UCRL-95088, Rev. 1,

C Livermore, California, June 1987.

C 2. Mark K. Seager, A SLAP for the Masses, in

C G. F. Carey, Ed., Parallel Supercomputing: Methods,

C Algorithms and Applications, Wiley, 1989, pp.135-155.

C***ROUTINES CALLED D1MACH, DCOPY, DNRM2, DPIGMR

C***REVISION HISTORY (YYMMDD)

C 890404 DATE WRITTEN

C 890404 Previous REVISION DATE

C 890915 Made changes requested at July 1989 CML Meeting. (MKS)

C 890922 Numerous changes to prologue to make closer to SLATEC

C standard. (FNF)

C 890929 Numerous changes to reduce SP/DP differences. (FNF)

C 891004 Added new reference.

C 910411 Prologue converted to Version 4.0 format. (BAB)

C 910506 Corrected errors in C***ROUTINES CALLED list. (FNF)

C 920407 COMMON BLOCK renamed DSLBLK. (WRB)

C 920511 Added complete declaration section. (WRB)

C 920929 Corrected format of references. (FNF)

C 921019 Changed 500.0 to 500 to reduce SP/DP differences. (FNF)

C 921026 Added check for valid value of ITOL. (FNF)

C***END PROLOGUE DGMRES

C The following is for optimized compilation on LLNL/LTSS Crays.

CLLL. OPTIMIZE

C .. Scalar Arguments ..

 DOUBLE PRECISION ERR, TOL

 INTEGER IERR, ISYM, ITER, ITMAX, ITOL, IUNIT, LIGW, LRGW, N, NELT

C .. Array Arguments ..

 DOUBLE PRECISION A(NELT), B(N), RGWK(LRGW), RWORK(*), SB(N),

 + SX(N), X(N)

 INTEGER IA(NELT), IGWK(LIGW), IWORK(*), JA(NELT)

C .. Subroutine Arguments ..

 EXTERNAL MATVEC, MSOLVE

96

C .. Local Scalars ..

 DOUBLE PRECISION BNRM, RHOL, SUM

 INTEGER I, IFLAG, JPRE, JSCAL, KMP, LDL, LGMR, LHES, LQ, LR, LV,

 + LW, LXL, LZ, LZM1, MAXL, MAXLP1, NMS, NMSL, NRMAX, NRSTS

C .. External Functions ..

 DOUBLE PRECISION D1MACH, DNRM2

 EXTERNAL D1MACH, DNRM2

C .. External Subroutines ..

 EXTERNAL DCOPY, DPIGMR

C .. Intrinsic Functions ..

 INTRINSIC SQRT

C***FIRST EXECUTABLE STATEMENT DGMRES

 IERR = 0

c do i=1,36

c write(*,*) i,rwork(i)

c enddo

c pause

c write(*,*) n,nelt

c pause

C --

C Load method parameters with user values or defaults.

C --

 MAXL = IGWK(1)

 IF (MAXL .EQ. 0) MAXL = 10

 IF (MAXL .GT. N) MAXL = N

 KMP = IGWK(2)

 IF (KMP .EQ. 0) KMP = MAXL

 IF (KMP .GT. MAXL) KMP = MAXL

 JSCAL = IGWK(3)

 JPRE = IGWK(4)

C Check for valid value of ITOL.

 IF((ITOL.LT.0) .OR. ((ITOL.GT.3).AND.(ITOL.NE.11))) GOTO 650

C Check for consistent values of ITOL and JPRE.

 IF(ITOL.EQ.1 .AND. JPRE.LT.0) GOTO 650

 IF(ITOL.EQ.2 .AND. JPRE.GE.0) GOTO 650

 NRMAX = IGWK(5)

 IF(NRMAX.EQ.0) NRMAX = 10

C If NRMAX .eq. -1, then set NRMAX = 0 to turn off restarting.

 IF(NRMAX.EQ.-1) NRMAX = 0

97

C If input value of TOL is zero, set it to its default value.

 IF(TOL.EQ.0.0D0) TOL = 500*D1MACH(3)

C

C Initialize counters.

 ITER = 0

 NMS = 0

 NRSTS = 0

c n=3*n ! I CHANGE

C --

C Form work array segment pointers.

C --

 MAXLP1 = MAXL + 1

 LV = 1

 LR = LV + N*MAXLP1

 LHES = LR + N + 1

 LQ = LHES + MAXL*MAXLP1

 LDL = LQ + 2*MAXL

 LW = LDL + N

 LXL = LW + N

 LZ = LXL + N

C WRITE(*,*) LR,LHES,LDL,LW,LXL,LZ,LRGW

C PAUSE

C Load IGWK(6) with required minimum length of the RGWK array.

 IGWK(6) = LZ +N - 1

 IF(LZ+N-1.GT.LRGW) GOTO 640

C --

C Calculate scaled-preconditioned norm of RHS vector b.

C --

C write(*,*) JPRE

C pause

C write(*,*) 'N',N

C pause

 IF (JPRE .LT. 0) THEN

C PAUSE

 CALL MSOLVE(N, B, RGWK(LR), NELT, IA, JA, A, ISYM,

 $ RWORK, IWORK)

 NMS = NMS + 1

 ELSE

C DO KK=1,N

98

C WRITE(*,*)'B', B(KK)

C ENDDO

C PAUSE

 CALL DCOPY(N, B, 1, RGWK(LR), 1)

C DO KK=LR,N+LR-1

C WRITE(*,*) KK,'RGWK',RGWK(KK)

C ENDDO

C PAUSE

C DO I=1,igwk(6)

C if(rgwk(I).NE.0)THEN

C WRITE(*,*) I,RGWK(I)

C ENDIF

C ENDDO

C PAUSE

 ENDIF

C write(*,*) 'NN',N

c pause

C write(*,*) JSCAL

C pause

 IF(JSCAL.EQ.2 .OR. JSCAL.EQ.3) THEN

 SUM = 0

 DO 10 I = 1,N

 SUM = SUM + (RGWK(LR-1+I)*SB(I))**2

 10 CONTINUE

 BNRM = SQRT(SUM)

 ELSE

 BNRM = DNRM2(N,RGWK(LR),1)

C IF(BNRM.EQ.0) THEN ! I CREATE

C BNRM=1 ! I CREATE

C ENDIF ! I CREATE

C write(*,*) BNRM

c pause

 ENDIF

C write(*,*) 'NNN',N

C pause

C ====== RWORK ARRAY IS CHANGED HERE @ MATVEC ======

C --

99

C Calculate initial residual.

C --

 CALL MATVEC(N, X, RGWK(LR), NELT, IA, JA, A, ISYM)

c do I=1,324

c WRITE(*,*) i,'rwork',rwork(i) !B(I)

c ENDDO

C WRITE(*,*) '=========================='

C do I=1,N

C WRITE(*,*) RGWK(LR-1+I)

C ENDDO

C WRITE(*,*) '=========================='

c pause

 DO 50 I = 1,N

 RGWK(LR-1+I) = B(I) - RGWK(LR-1+I)

 50 CONTINUE

C do I=1,N

C WRITE(*,*) "MM",I,RGWK(LR-1+I)

C ENDDO

C PAUSE

C write(*,*) 'NNNN',N

C pause

C --

C If performing restarting, then load the residual into the

C correct location in the RGWK array.

C --

 100 CONTINUE

C WRITE(*,*) NRSTS,NRMAX

C PAUSE

 IF(NRSTS.GT.NRMAX) GOTO 610

 IF(NRSTS.GT.0) THEN

C Copy the current residual to a different location in the RGWK

C array.

 CALL DCOPY(N, RGWK(LDL), 1, RGWK(LR), 1)

 ENDIF

C DO I=1,N

C WRITE(*,*) RGWK(LR-1+I)

C ENDDO

C WRITE(*,*) 'NNNNN',N

100

c do I=1,324

c WRITE(*,*) i,'rwork',rwork(i)

c ENDDO

c PAUSE

C --------------------------IMPORTANT-------------------------------

C Use the DPIGMR algorithm to solve the linear system A*Z = R.

C -- MATAHA

 CALL DPIGMR(N, RGWK(LR), SB, SX, JSCAL, MAXL, MAXLP1, KMP,

 $ NRSTS, JPRE, MATVEC, MSOLVE, NMSL, RGWK(LZ), RGWK(LV),

 $ RGWK(LHES), RGWK(LQ), LGMR, RWORK, IWORK, RGWK(LW),

 $ RGWK(LDL), RHOL, NRMAX, B, BNRM, X, RGWK(LXL), ITOL,

 $ TOL, NELT, IA, JA, A, ISYM, IUNIT, IFLAG, ERR)

 ITER = ITER + LGMR

 NMS = NMS + NMSL

c PAUSE

C DO I=1,N

C WRITE(*,*) I,RGWK(LZ-1+I)

C ENDDO

C PAUSE

C

C Increment X by the current approximate solution Z of A*Z = R.

C

 LZM1 = LZ - 1

 DO 110 I = 1,N

 X(I) = X(I) + RGWK(LZM1+I)

 110 CONTINUE

C WRITE(*,*) IFLAG

c PAUSE

 IF(IFLAG.EQ.0) GOTO 600

 IF(IFLAG.EQ.1) THEN

 NRSTS = NRSTS + 1

 GOTO 100

 ENDIF

 IF(IFLAG.EQ.2) GOTO 620

C --

C All returns are made through this section.

C --

C The iteration has converged.

C

 600 CONTINUE

101

 IGWK(7) = NMS

 RGWK(1) = RHOL

 IERR = 0

 RETURN

C

C Max number((NRMAX+1)*MAXL) of linear iterations performed.

 610 CONTINUE

 IGWK(7) = NMS

 RGWK(1) = RHOL

 IERR = 1

 RETURN

C

C GMRES failed to reduce last residual in MAXL iterations.

C The iteration has stalled.

 620 CONTINUE

 IGWK(7) = NMS

 RGWK(1) = RHOL

 IERR = 2

 RETURN

C Error return. Insufficient length for RGWK array.

 640 CONTINUE

 ERR = TOL

 IERR = -1

 RETURN

C Error return. Inconsistent ITOL and JPRE values.

 650 CONTINUE

 ERR = TOL

 IERR = -2

 RETURN

C------------- LAST LINE OF DGMRES FOLLOWS ----------------------------

 END

c==

102

APPENDIX A.1

Sample of first input file

A Square Plate Bending

.3 0 30000000 8 50 1 0 0 !THICKNESS V E NSUB No. of Elements, No. of Field Points

Nodes (Node No., x-coordinate, y-coordinate):

1 0 0

2 1 0

3 2 0

4 3 0

5 4 0

6 5 0

7 6 0

8 7 0

9 8 0

10 9 0

11 10 0

12 11 0

13 12 0

14 13 0

15 14 0

16 15 0

17 16 0

18 17 0

19 18 0

20 19 0

21 20 0

22 20 1

23 20 2

24 20 3

25 20 4

26 20 5

27 19 5

28 18 5

29 17 5

30 16 5

31 15 5

32 14 5

33 13 5

34 12 5

103

35 11 5

36 10 5

37 9 5

38 8 5

39 7 5

40 6 5

41 5 5

42 4 5

43 3 5

44 2 5

45 1 5

46 0 5

47 0 4

48 0 3

49 0 2

50 0 1

Elements and Boundary Conditions (Element No., Local Node 1, Local Node 2, BC Type, BC Value):

1 1 2 2 0 2 0 2 0

2 2 3 2 0 2 0 2 0

3 3 4 2 0 2 0 2 0

4 4 5 2 0 2 0 2 0

5 5 6 2 0 2 0 2 0

6 6 7 2 0 2 0 2 0

7 7 8 2 0 2 0 2 0

8 8 9 2 0 2 0 2 0

9 9 10 2 0 2 0 2 0

10 10 11 2 0 2 0 2 0

11 11 12 2 0 2 0 2 0

12 12 13 2 0 2 0 2 0

13 13 14 2 0 2 0 2 0

14 14 15 2 0 2 0 2 0

15 15 16 2 0 2 0 2 0

16 16 17 2 0 2 0 2 0

17 17 18 2 0 2 0 2 0

18 18 19 2 0 2 0 2 0

19 19 20 2 0 2 0 2 0

20 20 21 2 0 2 0 2 0

21 21 22 2 0 2 0 2 -1.5

22 22 23 2 0 2 0 2 -1.5

23 23 24 2 0 2 0 2 -1.5

104

24 24 25 2 0 2 0 2 -1.5

25 25 26 2 0 2 0 2 -1.5

26 26 27 2 0 2 0 2 0

27 27 28 2 0 2 0 2 0

28 28 29 2 0 2 0 2 0

29 29 30 2 0 2 0 2 0

30 30 31 2 0 2 0 2 0

31 31 32 2 0 2 0 2 0

32 32 33 2 0 2 0 2 0

33 33 34 2 0 2 0 2 0

34 34 35 2 0 2 0 2 0

35 35 36 2 0 2 0 2 0

36 36 37 2 0 2 0 2 0

37 37 38 2 0 2 0 2 0

38 38 39 2 0 2 0 2 0

39 39 40 2 0 2 0 2 0

40 40 41 2 0 2 0 2 0

41 41 42 2 0 2 0 2 0

42 42 43 2 0 2 0 2 0

43 43 44 2 0 2 0 2 0

44 44 45 2 0 2 0 2 0

45 45 46 2 0 2 0 2 0

46 46 47 1 0 1 0 1 0

47 47 48 1 0 1 0 1 0

48 48 49 1 0 1 0 1 0

49 49 50 1 0 1 0 1 0

50 50 1 1 0 1 0 1 0

Field Points Inside Domain (Field Point No., x-coordinate, y-coordinate):

1 10 2.5

End of File

105

APPENDIX A.2

Sample of second input file

 500 10 279 279 1.0E-7 ! maxl levmx nexp ntylr tolerance

 50 50000 50000 50 90000000 ! maxia ncellmx nleafmx mxl nwksz

 3 ! maxt

Definitions of the above parameters:

maxt: maximum terms in use from expansion (T =< 5)

maxl: maximum number of elements in a leaf

levmx: maximum number of tree levels

nexp: order of the fastmultipole expansions (p)

ntylr: order of the local expansions (= p, in general)

tolerance: tolerance for convergence used in the iterative solver

maxia: maximum number of parameters

ncellmx: maximum number of cells allowed in the tree

nleafmx: maximum number of leaves allowed in the tree

mxl: maximum dimension of Krylov subspace used in the iterative solver

nwksz: size of the space used to store coefficients in preconditioner

 (use default in the code,if value = 0)

c--

